20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

Search for beyond standard model physics at LHC

 Kenichi Hatakeyama 畠山 賢一 Baylor University
 for the CMS and ATLAS Collaborations

August 25 - 29, 2014

Introduction

Discovery of a BEH scalar @ ~125 GeV completes SM

Still many open questions: motivate searches for physics beyond the SM

П

Some Guiding Questions & Ideas

A Large # of Results w/ 2012 Data

Ð

CMS and ATLAS searched for new physics in a variety of final states

CMS ATLAS **Exotica** Exotica . . 14 pub + 14 PAS 14 pub + 29 conf note https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO SUSY Beyond 2 Generations | | 18 pub + 38 conf note 6 pub + 17 PAS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G **BSM Higgs** SUSY П 4 pub + 6 conf note 12 pub + 23 PAS https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS BSM Higgs 4 pub + 6 PASObviously cannot cover all these results. I https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG will present only some highlights of these See also <u>David Rousseau's talk</u> on Monday results in this talk. And, ...

August 25 - 29, 2014

16 Parallel Talks for Details

Monday:

- <u>Searches for direct pair production of third</u> <u>generation squarks with the ATLAS detector</u>: USAI, Giulio
- <u>3rd generation SUSY searches at CMS</u>: LACROIX, Florent Sylvain
- Inclusive searches for squarks and gluinos with the <u>ATLAS detector</u>: MARTIN DIT LATOUR, Bertrand
- Inclusive SUSY searches at CMS: VANELDEREN, Lukas
- Search for electroweak SUSY production at CMS: MASCIOVECCHIO, Mario

Tuesday:

- Searches for production of two Higgs bosons using the CMS detector: DAS, Souvik
- Beyond-the-Standard Model Higgs physics using the ATLAS experiment: ERNIS, Gunar
- Search for Higgs Bosons Beyond the Standard Model with the CMS Detector: SCHRöDER, Matthias
- Searches for invisible decay modes of the Higgs boson with the CMS detector: DUNNE, Patrick James
- <u>Constraints on new phenomena through Higgs</u> <u>coupling measurements with the ATLAS detector</u>: MAIANI, Camilla

Thursday:

- Search for heavy resonances in two-particle final states with leptons, jets and photons at CMS: GUTH, Andreas
- Searches for heavy resonances and anomalous production of multi-leptons with the ATLAS detector: DAYA, Rozmin
- Searches for vector-like quarks, tt and tb resonances with the ATLAS detector: CALVET, David
- Searches for supersymmetry in resonance production, R-parity violating signatures and events with long-lived particles with the ATLAS detector: GOBLIRSCH-KOLB, Maximilian
- Search for Dark Matter at CMS: HOEPFNER, kerstin
- Searches for dark matter and extra dimensions with the ATLAS detector: Mr. CLEMENT, Christophe

Much more complete stories will be presented in the parallel-session talks

Resonances

Resonance Searches

□ Mass resonances are simple yet powerful probe to discover new particles

- Predicted in many BSM scenarios:
 - Single resonances: Extended gauge theories [W'/Z'], compositeness [excited fermions], Randall-Sundrum (RS) model [KK-graviton/gluon] etc.
 - Paired resonances: Supersymmetry [gluinos/squarks], leptoquarks, vector-like quarks, colorons, etc.
- □ Additional information comes from e.g. angular distributions

Dileptons

Jet Substructure: Top/W Tagging

- New physics searches often involve high p_T boosted top/W
 - Boosted decay products \rightarrow merged jets. E.g. $\Delta R_{qq}^{\min} \approx \Delta \theta_{qq}^{\min} \approx 2 \frac{M_V}{m_{eq}}$

- Standard jet reconstruction w/ anti-k_T algorithm, size parameter R=0.5
- Use fat jets tagging algorithm based on Cambridge/Aachen clustering algorithm, with size parameter R=0.8 (CA8) or 1.5 (HEP top tagger)

П

- □ Semi-leptonic search: t → W+b -> (lv)+b
 - One isolated lepton (e,mu)
 - $p_T^{jet1,2}$ >120(40) GeV, ≥1 btag(s)
 - p_T^{top}>85 GeV
 - 130 < m_{top} < 210 GeV

All hadronic search $b t \rightarrow W+b \rightarrow (qq)+b$ $p_T^{top>450 \text{ GeV: CMS top tagging algo}$ Subjet b-tagging $p_T^{b>370 \text{ GeV}}$ jet substructure technique!

August 25 - 29, 2014

arXiv:1402.2176, CMS-PAS-B2G-12-009

- □ Semi-leptonic search: t → W+b -> $(l_V)+b$
 - One isolated lepton (e,mu)
 - $p_T^{jet1,2}$ >120(40) GeV, ≥1 btag(s)
 - p_T^{top}>85 GeV
 - 130 < m_{top} < 210 GeV

□ All hadronic search $b_t \rightarrow W+b \rightarrow (qq)+b$

- p_T^{top}>450 GeV: CMS top tagging algo
- Subjet b-tagging p_T^b> 370 GeV technique!

August 25 - 29, 2014

arXiv:1402.2176, CMS-PAS-B2G-12-009

Vector-like Top Quark (T') Pair

- □ T' → Wb, Zt, Ht:
 T' crucial for naturalness
 - Zt + X analysis (<u>ATLAS-CONF-2013-051</u>):
 - □ Opposite-sign (OS)
 dileptons or ≥3 leptons +
 b-tags
 - Wb + X analysis (<u>ATLAS-CONF-2013-060</u>):
 - Boosted-W + b-tags
 - Ht + X analysis (<u>ATLAS-CONF-2014-036</u>):
 - Same-sign (SS) dileptons + b-tags

Different analyses/optimizations complementarily cover a wide phase space

Single Resonances

Final State	Highest mass event	Highest mass limit		Final State	Highest mass event	Highest mass limit
Dijet	~5.1 TeV	5.82 TeV		WZ(3lv)	~1.1 TeV	1.52 TeV
ee	~1.8 TeV	2.79 TeV		VV(jjlv)*	~3.3 TeV	2.5 TeV
μμ	~1.8 TeV	2.53 TeV		ZZ(lljj)*	~2.2 TeV	1.59 TeV
ττ	~0.7 TeV	1.90 TeV		VV(jj)*	~2.7 TeV	1.7 TeV
lv	~2.3 TeV	3.28 TeV		Vq(jj)*	~3.7 TeV	3.2 TeV
bb	~4.1 TeV	1.68 TeV		hh(bbbb)	~1.3 TeV	0.59-0.71TeV
top b*	~3.8 TeV	2.03 TeV		W(lν)γ	~1.3 TeV	0.96 TeV
ttbar*	~3.3 TeV	2.5 TeV		Z(ll)γ	~1.6 TeV	0.89 TeV
Resor	nances to fern	nion Pairs	γjet	~3 TeV	3.5 TeV	

*Analysis is using jet-substructure techniques

Resonance decays involving bosons

~1.3 TeV

Probing ~1 - 5 TeV scale masses in a wide range of final states

llγ

2.2 TeV

Paired Resonances

Final State	Highest mass event	Highest mass limit	
2x(top jet)	~1.2 TeV	0.8 TeV	
2x(jj)	~1.2 TeV	0.74 TeV	
2x(jjj)	~1.9 TeV	0.65 TeV	
2x(jjb)	~1.7 TeV	0.835 TeV	
2x(jjjj)	~1.7 TeV	1.2 TeV	
2x(top tau)	S _T ~0.9 TeV	0.63 TeV	
2x(tau b)	~0.85 TeV	0.74 TeV	

Probing ~0.5-1 TeV scale masses in a wide range of final states

pair-produced

Dark Matter

Dark Matter (DM) Searches

Experimental approaches:

- □ Direct search
 - DM-nucleon scattering: CDMS, SIMPLE, XENON, LUX
- □ Indirect search
 - DM annihilation or decay: Fermi, PAMELA, AMS, IceCube
- □ Collider search: LHC
 - DM production in cascade decays from heavier particles: Supersymmetry, Higgs portal
 - Direct DM pair production: Effective field theory (EFT)
 EME collapses SM_DM interaction in effective 4 point one

EMF collapses SM-DM interaction in effective 4-point operator

Parameters: m_{DM}, EFT scale

 $\Lambda = M / \sqrt{g_{\chi} g_q}$

Translate to DM-nucleon cross section

 $\sigma(\chi N \to \chi N) \sim \frac{1}{\Lambda 4} \mu_{\chi,N}^2$

Mono-X Searches

- Monojet + MET
- Monophoton + MET
- Mono-W/Z + MET
- Monotop + MET

For mono-W, two diagrams with same initial & final state interfere destructively \rightarrow Mono-W is most sensitive to models where ratio of couplings = -1

Observations in different channels would give us information about the couplings of the mediator particle to different quarks and to gluons

Mono-X Searches

- □ Limits are set on effective field theory scale Λ using effective operators at 90% CL \Rightarrow limits on elastic DM-nucleon cross section versus DM mass
- Complementary unique coverage at low mass and strong sensitivity for spin-dependent interactions

Higgs Portal to Dark Matter

10³

 $Br(H_{125} \rightarrow invisible) < 0.68 (0.81)$ for VBF (Z(ll))

The limits on the DM-nucleon cross section vary for scalar, fermion, & vector, but the most stringent limits at low DM masses

Supersymmetry

SUSY "Framework" for LHC Searches

All-hadronic Inclusive SUSY Search

All hadronic inclusive search:

- □ Minimum jet multiplicity (2 to 6 jets)
- $\square \qquad M_{eff} = MET + \Sigma p_{T}(jets) > 0.8-2.2 \text{ TeV}$
- 15 signal regions targeting different decay chains
 - 2 of which require hadronic W decays (W→jj)

August 25 - 29, 2014

Stop/Sbottom from Gluino

 $\tilde{q} \rightarrow tb\tilde{\chi}^{\pm}$

 $\widetilde{\chi}^{\pm} \rightarrow W^{\star} \widetilde{\chi}^{0}$

 $\tilde{q} \rightarrow t\bar{t} \tilde{\chi}^{c}$

 $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}^0$

Inclusive search with b-tags:

 Testing natural SUSY scenario with ~TeV gluino, possible lighter stops and sbottoms, and a nearly degenerate chargino/neutralino triplet.

 Covering all possible combinations of partial widths into: 4b, 3b1t, 2b2t, 1b3t, 4t

CMS Preliminary, L = 19.3 fb⁻¹, \sqrt{s} = 8 TeV

CMS-PAS-SUS-14-011

Direct Stop Production

Dominant stop decay channel largely depends on available phase space

Decay modes in the m(stop) vs. m(LSP) plane (can be more complex in reality depending on other ewkino, sleptons etc masses)

Stop Search with 0/1-leptons

Stop with Compressed Spectra

More Stop Searches

- Generic search for kinematic endpoint in dilepton (e⁺e⁻ & $\mu^+\mu^-$) mass spectrum • e.g. $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \tilde{\chi}_1^0 l^+ l^-$ with $m_{edge} = \sqrt{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2)}/m_{\tilde{l}}$
- \square BG estimation with opposite sign, opposite flavor (e⁺µ⁻ & e⁻µ⁺) leptons
 - Two search regions: central $|\eta| < 1.4$, forward 1.6 < $|\eta| < 2.4$
 - 3 Signal and BG contributions determined from kinematic fit
 - In addition, cut & count analysis of events with 20 < M(l⁺l⁻) < 70 GeV</p>

<u>CMS-PAS-SUS-12-019</u>

cut & count analysis

	Central	Forward
Observed [SF]	860	163
Flav. Sym. [OF]	$722\pm27\pm29$	$155\pm13\pm10$
Drell–Yan	8.2 ± 2.6	1.7 ± 1.4
Total estimates	730 ± 40	157 ± 16
Observed – Estimated	130^{+48}_{-49}	6^{+20}_{-21}
Significance $[\sigma]$	2.6	0.3

- Generic search for kinematic endpoint in dilepton (e⁺e⁻ & $\mu^+\mu^-$) mass spectrum • e.g. $\tilde{\chi}_2^0 \rightarrow l\tilde{l} \rightarrow \tilde{\chi}_1^0 l^+ l^-$ with $m_{edge} = \sqrt{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\tilde{\chi}_1^0}^2)}/m_{\tilde{l}}$
- □ BG estimation with opposite sign, opposite flavor ($e^+\mu^-$ & $e^-\mu^+$) leptons
 - Two search regions: central $|\eta| < 1.4$, forward 1.6 < $|\eta| < 2.4$
- □ Signal and BG contributions determined from kinematic fit
 - In addition, cut & count analysis of events with 20 < M(l⁺l⁻) < 70 GeV

August 25 - 29, 2014

Future Prospects

Future Prospects

- Good prospects for gluinos, squarks, & high mass resonances from energy increase from 8 \rightarrow 13/14 TeV
- For weakly interacting particles, П high-luminosity helps a lot

 $\tilde{g} \to qq\tilde{\chi}_1^0$

Ge

900

700

600

400

300E

200

100E 0<u>⊢</u> 200

₽800

√s=14 TeV

600

ATL-PHY-PUB-2014-010,

400

CMS-PAS-FTR-13-0014

August 25 - 29, 2014

1500

2000

2500

3000

m_ã [GeV]

ATLAS Simulation Preliminary

L dt = 300, 3000 fb⁻¹, \s = 14 TeV

ATLAS 20.3 fb⁻¹, (s = 8 TeV, 95% CL

95% CL limit, 3000 fb⁻¹, (µ) = 140

5c disc., 3000 fb⁻¹, (u) = 140

lsc., 300 fb⁻¹. (u) = 60

1000

95% CL limit, 300 fb⁻¹, $\langle \mu \rangle$ = 60

 \tilde{g} - \tilde{g} production, $\tilde{g} \rightarrow qq \tilde{\chi}$

0-lepton combined

m__x,[GeV]

2500

2000

1500

1000

500

0

500

33

Summary

- CMS & ATLAS have performed a wide variety of searches for physics beyond the Standard Model in the LHC Run 1 (2009-2012) data
- □ No new physics was observed so far: only exclusions are provided
 - Singly (pair) produced resonances up to 5 (1) TeV
 - Unique complementary dark matter searches
 - Gluinos up to 1.4 TeV, 3rd gen. squarks up to 0.7 TeV, gauginos up to ~0.3-0.7 TeV

ATLAS Exotics Summary

Mass limit

ATLAS Exotics Searches* - 95% CL Exclusion

 ℓ, γ Jets $\mathsf{E}_{\tau}^{\text{miss}}$ ($\mathcal{L} \, \mathrm{dt}[\mathrm{fb}^{-1}]$)

Status: ICHEP 2014

Model

ATLAS Preliminary

Reference

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \quad \sqrt{s} = 7, 8 \text{ TeV}$

				•	-			
	ADD $G_{KK} + g/g$	_	1-2 i	Yes	4.7	Mp 4.37 TeV	$n \equiv 2$	1210.4491
ions	ADD non-resonant //	2e. u	_ ,	_	20.3	Mc 5.2 TeV	n = 3 HI Z	ATLAS-CONE-2014-030
	ADD OBH $\rightarrow \ell q$	1 e u	1 i	_	20.3	M. 52 TeV	n = 6	1311 2006
		-	2 i	_	20.3	M. 5.82 ToV	n = 6	to be submitted to PBD
		2 (99)	2 J	_	20.3	M 5.02 IEV	n = 0 $n = 6$ $M_{\odot} = 1$ E TeV per ret PH	1000 4075
ISI	ADD BH high Σ_{rk}	$\geq \mu (33)$	-	_	20.3	Mth 5.7 TeV	$n = 0, m_D = 1.5$ TeV, non-not BH	1306.4075
xtra dime		$\geq 1e, \mu$	22]	-	20.3	M _{th} 6.2 lev	$n = 6$, $M_D = 1.5$ lev, non-rot BH	1405.4254
	$RS1 G_{KK} \to \ell\ell$	2 e, µ	-	_	20.3	G _{KK} mass 2.68 TeV	$k/M_{PI} = 0.1$	1405.4123
	$RS1\ G_{KK}\to WW\to\ell\nu\ell\nu$	2 e,µ	-	Yes	4.7	G _{KK} mass 1.23 TeV	$k/M_{Pl} = 0.1$	1208.2880
	Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q$	2 e, µ	2j/1J	-	20.3	GKK mass 730 GeV	$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-039
ш	Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$	-	4 b	-	19.5	G _{КК} mass 590-710 GeV	$k/\overline{M}_{Pl} = 1.0$	ATLAS-CONF-2014-005
	Bulk RS $g_{KK} \rightarrow t\overline{t}$	1 e, µ	≥ 1 b, ≥ 1 J/2	2j Yes	14.3	gкк mass 2.0 TeV	BR = 0.925	ATLAS-CONF-2013-052
	S^1/Z_2 ED	2 e, µ	-	-	5.0	$M_{KK} \approx R^{-1}$ 4.71 TeV		1209.2535
	UED	2γ	-	Yes	4.8	Compact. scale R ⁻¹ 1.41 TeV		ATLAS-CONF-2012-072
SL	SSM $Z' \rightarrow \ell \ell$	2 e, µ	-	-	20.3	Z' mass 2.9 TeV		1405.4123
e boson	SSM $Z' \rightarrow \tau \tau$	2 τ	-	-	19.5	Z' mass 1.9 TeV		ATLAS-CONF-2013-066
	SSM $W' \rightarrow \ell v$	1 e, µ	-	Yes	20.3	W' mass 3.28 TeV		ATLAS-CONF-2014-017
	EGM $W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$	3 e, µ	-	Yes	20.3	W' mass 1.52 TeV		1406.4456
br	EGM $W' \rightarrow WZ \rightarrow qq\ell\ell$	2 e, µ	2j/1J	-	20.3	W' mass 1.59 TeV		ATLAS-CONF-2014-039
al	IBSM $W'_{-} \rightarrow t\overline{b}$	1 e. u	2 b. 0-1 i	Yes	14.3	W' mass 184 TeV		ATLAS-CONE-2013-050
0	$IBSM W' \to t\overline{b}$	0 e µ	>1b1.	-	20.3	W/ mass 177 TeV		to be submitted to FP.IC.
	Litem NR 10	17:	,		2010			
	CI qqqq	-	2 j	-	4.8	۸ 7.6 TeV	$\eta = +1$	1210.1718
Ö	CI qqℓℓ	2 e, µ	-	-	20.3	٨	21.6 TeV $\eta_{LL} = -1$	ATLAS-CONF-2014-030
	CI uutt	2 e, µ (SS	$(b) \ge 1 \ b, \ge 1 \ j$	Yes	14.3	۸ 3.3 TeV	C = 1	ATLAS-CONF-2013-051
~	FET DE exercites (Dires)	0	1.03		10.5			
N	EFT D5 operator (Dirac)	0 e, µ	1-2 J	Yes	10.5	M, 731 GeV	at 90% CL for $m(\chi) < 80 \text{ GeV}$	ATLAS-CONF-2012-147
J	EFT D9 operator (Dirac)	0 e, µ	1 J, ≤ 1 j	Yes	20.3	M. 2.4 TeV	at 90% CL for $m(\chi) < 100$ GeV	1309.4017
	Scalar I O 1 st gen	20	> 2 i	-	1.0	LO mass 660 GeV	$\beta = 1$	1112 4828
Q	Scalar I O 2 nd gen	2 11	> 2 i	_	1.0	LO mass 685 GeV	$\beta = 1$	1203 3172
-	Scalar LO 2rd gan	10411			4.7		P = 1	1203.0536
	Scalar LQ 3" gen	ιe, μ, ιι			4.7	LQ mass 334 GeV	<i>p</i> = 1	1303.0520
	Vector-like quark $TT \rightarrow Ht + X$	1 e, µ	\geq 2 b, \geq 4 j	Yes	14.3	T mass 790 GeV	T in (T,B) doublet	ATLAS-CONF-2013-018
S S	Vector-like quark $TT \rightarrow Wb + X$	1 e, µ	≥ 1 b, ≥ 3 j	Yes	14.3	T mass 670 GeV	isospin singlet	ATLAS-CONF-2013-060
arl	Vector-like quark $TT \rightarrow Zt + X$	2/>3 e. u	>2/>1 b	_	20.3	T mass 735 GeV	T in (T.B) doublet	ATLAS-CONE-2014-036
E E	Vector-like quark $BB \rightarrow Zb + X$	21>3 e 11	>2/>1 b	_	20.3	B mass 755 GeV	B in (B Y) doublet	ATLAS-CONE-2014-036
	Vector-like quark $BB \rightarrow Wt + X$	2000,0) > 1 b > 1 i	Vaa	14.9		B in (TB) doublet	ATLAS CONF 2012 051
		2 ε, μ (00	i) ≥ 10, ≥ 1j	ies	14.5		B III (1,B) doublet	AILAS-CONF-2013-051
d IS	Excited quark $q^* \rightarrow q\gamma$	1γ	1 j	-	20.3	q* mass 3.5 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1309.3230
ite	Excited quark $q^* \rightarrow qg$	-	2 j	-	20.3	q* mass 4.09 TeV	only u^* and d^* , $\Lambda = m(q^*)$	to be submitted to PRD
2 E	Excited quark $b^* \rightarrow Wt$	1 or 2 e. µ	1 b. 2 j or 1	i Yes	4.7	b* mass 870 GeV	left-handed coupling	1301.1583
БШ	Excited lepton $\ell^* \rightarrow \ell \gamma$	2 e. u. 1 1	v –	_	13.0	l [*] mass 2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
		= = , , , , , , , ,	r		10.0	2.2.104	N = 2.2 lov	
	LSTC $a_T \rightarrow W\gamma$	1 e, μ, 1 γ	γ –	Yes	20.3	a _T mass 960 GeV		to be submitted to PLB
	LRSM Majorana v	2 e, µ	2 j	-	2.1	N ⁰ mass 1.5 TeV	$m(W_R) = 2$ TeV, no mixing	1203.5420
5	Type III Seesaw	2 e, µ	-	-	5.8	N [±] mass 245 GeV	$ V_e =0.055$, $ V_{\mu} =0.063$, $ V_{\tau} =0$	ATLAS-CONF-2013-019
the	Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2 e, μ (SS	5) –	_	4.7	H ^{±±} mass 409 GeV	DY production, BR($H^{\pm\pm} \rightarrow \ell \ell$)=1	1210.5070
0	Multi-charged particles	_	-	_	4.4	multi-charged particle mass 490 GeV	DY production, $ q = 4e$	1301.5272
	Magnetic monopoles	_	_	_	20	monopole mass 862 GeV	DY production, $ g = 1g_D$	1207.6411
	mag. one monopoloo				2.0	002 GeV	p.c.audion, (8) - 180	1207.0411
		√s =	= 7 TeV	√s =	8 TeV	10-1 1 1	<u> </u>	I

*Only a selection of the available mass limits on new states or phenomena is shown.

CMS Exotica Summary

August 25 - 29, 2014

CMS B2G Summary

CMS Searches for New Physics Beyond Two Generations (B2G)

95% CL Exclusions (TeV)

CMS SUSY Summary

August 25 - 29, 2014

ATLAS SUSY Summary

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$

Status: ICHEP 2014

Ы		Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm mas}$	$\int \mathcal{L} dt [fb]$	⁻¹] Mass limit	Reference
stop squark gluino producti	Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \tilde{g}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu / \nu) \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (vino NLSP)} \\ \text{GGM (hing NLSP)} \\ \text{GGM (hing NLSP)} \\ \text{GGM (hing LSP)} \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 r + 0 - 1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \\ \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 2-4 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 1407.0603 ATLAS-CONF-2014-01 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
sbottom	3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}^0_{1} \\ \tilde{g} \rightarrow t \tilde{\chi}^0_{1} \\ \tilde{g} \rightarrow t \tilde{\chi}^0_{1,1} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}^0_{1} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	8 1.25 TeV m(t ⁰ ₁)<400 GeV 8 1.1 TeV m(t ⁰ ₁)<350 GeV	1407.0600 1308.1841 1407.0600 1407.0600
oton EWK gauginos	3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_1 \tilde{b}_1 - \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 \\ & \tilde{b}_1 \tilde{b}_1 - \tilde{b}_1 \rightarrow b \tilde{\chi}_1^+ \\ & \tilde{t}_1 \tilde{t}_1 ([\text{ight}), \tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ \\ & \tilde{t}_1 \tilde{t}_1 ([\text{ight}), \tilde{t}_1 \rightarrow W \tilde{b}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 ((\text{medium}), \tilde{t}_1 \rightarrow W \tilde{b}_1^+ \\ & \tilde{t}_1 \tilde{t}_1 ((\text{medium}), \tilde{t}_1 \rightarrow b \tilde{k}_1^+ \\ & \tilde{t}_1 \tilde{t}_1 ((\text{medium}), \tilde{t}_1 \rightarrow b \tilde{k}_1^+ \\ & \tilde{t}_1 \tilde{t}_1 ((\text{meav}), \tilde{t}_1 \rightarrow \tilde{k}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 ((\text{meav}), \tilde{t}_1 \rightarrow \tilde{k}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{meav}), \tilde{t}_1 \rightarrow \tilde{k}_1^0 \\ & \tilde{t}_1 \tilde{t}_1 (\text{meav}) \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 (\text{meav}) \\ & \tilde{t}_1 \tilde{t}_1 \tilde{t}_1 (\text{meav}) \\ & \tilde{t}_1 \tilde{t}_1$	$\begin{matrix} 0 \\ 2 e, \mu (SS) \\ 1-2 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 0 \\ 3 e, \mu (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
slep	EW direct	$ \begin{array}{l} \tilde{\ell}_{1,\mathbf{k}}\tilde{\ell}_{1,\mathbf{k}},\tilde{\ell}\rightarrow\ell\tilde{x}_{1}^{0}\\ \tilde{r}_{1}^{*}\tilde{x}_{1},\tilde{x}_{1}^{*}\rightarrow\ell\nu(\tilde{r})\\ \tilde{x}_{1}^{*}\tilde{x}_{1},\tilde{x}_{1}^{*}\rightarrow\ell\nu(\tilde{r})\\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*},\tilde{x}_{1}^{*}\rightarrow\bar{r}\nu(\tau\tilde{r})\\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{*}\rightarrow\ell_{1}\ell\tilde{\ell}_{1}(\ell(v),\ell\tilde{r}\tilde{\ell}_{1}\ell(\tilde{v}))\\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0}\rightarrowW\tilde{x}_{1}^{0}\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{1}^{*}\tilde{x}_{2}^{0}\rightarrowW\tilde{x}_{1}^{0}\delta\tilde{x}_{1}^{0}\\ \tilde{x}_{2}^{*}\tilde{x}_{2}^{*},\tilde{x}_{2}^{*}\rightarrow\tilde{k}_{1}\ell\ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \text{-} 3 \ e, \mu \\ 2 \text{-} 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 - 0 2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
٨c	Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^{\dagger}\tilde{\chi}_1^{-} \text{ prod., long-lived }\tilde{\chi}_1^{\pm}\\ \text{Stable, stopped }\tilde{g} \text{ R-hadron}\\ \text{GMSB, stable }\tilde{\tau}, \tilde{\chi}_1^{0} {\rightarrow} \tilde{\tau}(\tilde{\epsilon}, \tilde{\mu}) {+} \tau(e,\\ \text{GMSB,} \tilde{\chi}_1^{0} {\rightarrow} \gamma \tilde{G}, \text{ long-lived }\tilde{\chi}_1^{0}\\ \tilde{q}\tilde{q}, \tilde{\chi}_1^{0} {\rightarrow} qq\mu \ (\text{RPV}) \end{array}$	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - -	Yes Yes Yes	20.3 27.9 15.9 4.7 20.3	χ [±] 270 GeV m(k [±] ₁)-m(k ⁺ ₁)=160 MeV, τ(k [±] ₁)=0.2 ns χ̄ 832 GeV m(k ⁰ ₁)=100 GeV, 10 μs < τ(x̄)	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
Ē	RPV	$\begin{array}{l} LFV pp \rightarrow \tilde{\mathbf{y}}_{\tau} + X, \tilde{\mathbf{y}}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{\mathbf{y}}_{\tau} + X, \tilde{\mathbf{y}}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{\dagger} \rightarrow WV_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{X}_{1}^{\dagger}\tilde{X}_{1}, \tilde{X}_{1}^{\dagger} \rightarrow WV_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}_{e} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \tilde{t}_{1} \rightarrow b s \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	$\begin{tabular}{ c c c c c c c } \hline P_r & 1.61 \ TeV & \mathcal{X}'_{11}=0.10, \mathcal{A}_{132}=0.05$ \\ \hline P_r & 1.1 \ TeV & \mathcal{X}'_{11}=0.10, \mathcal{A}_{123}=0.05$ \\ \hline $\mathbf{\tilde{g}}, \mathbf{\tilde{g}} & 1.35 \ TeV & $\mathbf{m}(\mathbf{\tilde{g}})$=0.10, $\mathbf{m}(\mathbf{\tilde{g})}$=0.10, m	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
7	Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$2 e, \mu (SS)$	4 jets 2 b mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV incl. limit from 1110.2693 sgluon 350-800 GeV m(x)<80 GeV, limit of <687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
($\sqrt{s} = 7 \text{ TeV}$ full data p	s = 8 TeV artial data	$\sqrt{s} = 8$ full d	3 TeV lata		10 ⁻¹ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Dijets

Mono-X Searches

Higgs Portal to Dark Matter

August 25 - 29, 2014

Higgs Portal to Dark Matter

<u>arXiv:1404.1344</u>

The VBF channel sensitivity far exceeds the ZH one

The limits on the DM-nucleon cross section vary for scalar, fermion, & vector, but the most stringent limits at low DM masses

Supersymmetry (SUSY)

- SUSY is a fundamental global symmetry between fermions and bosons
 - Each fermion has a boson superpartner, and vice versa
 - Broken symmetry:
 - Gravity-mediated SUSY breaking, Gauge-mediated SUSY breaking (GMSB), etc

□ Why attractive?

- The Lightest Supersymmetric Particle (LSP, often neutralino or gravitino) is stable & neutral (if R-parity is conserved) → good Dark Matter candidate
- Supersymmetry provides a beautiful solution to the hierarchy problem

$$= \begin{array}{c} \sum_{k=1}^{\text{Classical}} & \sum_{k=1}^{\text{SM}} & \sum_{k=1}^{\text{SUSY}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{k=1}^{n} & + \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & + \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & + \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & + \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = (m_{h}^{2})_{0} - \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \frac{1}{16\pi^{2}}\lambda^{2}\Lambda^{2} + \dots \\ & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & = \sum_{j=1}^{n} \int_{\lambda_{j}}^{\lambda_{j}} & m_{h}^{2} & m_{h}^{2}$$

Supersymmetry Searches at the LHC

Displaced Dilepton: e, µ

- \Box Model:
 - stop-stop \rightarrow bl bl with lifetimes (ct ~ 100µm 2 cm)
- □ Selection:
 - OS and isolated e/µ with no common vertex
 - Control regions: SS & non-isolated regions to derive QCD background estimate
 - Validation regions: control regions with smaller d₀
 - Interpret as colored pair production with 100%
 BR into lepton + X. No selection on X.

Event Source	$0.02 \text{ cm} < d_0 < 0.05 \text{ cm}$	$0.05 \text{ cm} < d_0 < 0.1 \text{ cm}$	$ d_0 > 0.1 \text{ cm}$
Total expected background	$18.0 \pm 0.5 \pm 3.8$	$1.01 \pm 0.06 \pm 0.30$	$0.051 \pm 0.015 \pm 0.010$
Observation	19	0	0
$pp \rightarrow \tilde{t}_1 \tilde{t}_1^*$			
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ mm}$	$30.1 \pm 0.7 \pm 1.1$	$6.54 \pm 0.34 \pm 0.24$	$1.34 \pm 0.15 \pm 0.05$
$M = 500 \text{ GeV}, \langle c\tau \rangle = 1 \text{ cm}$	$35.3 \pm 0.8 \pm 1.3$	$30.3 \pm 0.7 \pm 1.1$	$51.3 \pm 1.0 \pm 1.9$
M = 500 GeV, $\langle c\tau \rangle$ = 10 cm	$4.73 \pm 0.30 \pm 0.17$	$5.57 \pm 0.32 \pm 0.20$	$26.27 \pm 0.70 \pm 0.93$

 Best results at cτ ~ 2 cm with exclusion of m(stop) < 790 GeV at 95% CL

LHC Evolution

Based on <u>LHC schedule approved by CERN management</u>, <u>LHC experiment spokespersons and</u> <u>technical coordinators on Dec 2, 2013</u> Also, Bordry at ECFA HL-LHC workshop & Gregor.