

## TOWARDS THE MEASUREMENT OF THE HYPERFINE STRUCTURE OF ANTIHYDROGEN AT CERN

Chloé Malbrunot 1,2

0

<sup>1</sup> CERN, Geneva, SWITZERLAND <sup>2</sup> Stefan Meyer Institute for Subatomic Physics, Vienna, AUSTRIA On behalf of the **ASACUSA** Collaboration









PANIC August 25<sup>th</sup> 2014

## MOTIVATIONS

No observation of antimatter universe: asymmetry at the cosmological scale



### **CPT** Theorem

0000

• •

> No violation of CPT observed to date: symmetry at the microscopic scale



High absolute precision (potential high sensitivity: Standard Model Extension)



## **GROUND STATE HYPERFINE SPLITTING**

### $\nu = 1.420405751768(1)\,{\rm GHz}$

S. G. Karshenboim, Precision Physics of Simple Atomic Systems, pages 142–162, Springer, Berlin, Heidelberg, 2003, hep-ph/0305205.

Leading term: Fermi contact term

00000000

has been measured to 5ppm

DiSciacca et al, Phys. Rev. Lett. 110, 13 (2013)

$$\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 cR_y$$

Finite electric and magnetic radius (Zemach corrections): ~-41ppm

access to the electric and magnetic form factors of the antiproton

$$\Delta 
u$$
(Zemach) =  $u_{\rm F} \frac{2Z \alpha m_{\rm e}}{\pi^2} \int \frac{d^3 p}{p^4} \left[ \underbrace{G_E(p^2)G_M(p^2)}_{\text{I}+\kappa} - 1 \right]$   
e.g Friar et al. Phys.Lett. B579 (2004)

**Polarizability** of p(bar) =1.88±0.64 ppm

**H**·HFS

Carlson, Nazaryan, and Griffioen PRA 78, 022517 (2008)

Remaining deviation theory-experiment:  $0.86 \pm 0.78 \text{ ppm}$ 

PANIC 2014, Hamburg

### **MEASUREMENT PRINCIPLE**

Detector

Spectroscopy with trapped antihydrogen: lower precision due to strong confining field Good candidate: atomic beam with RF resonance

1) no  $\overline{H}$  trapping needed  $\rightarrow$  no need for ultra-cold (< 1 K)  $\overline{H}$ 

2) atomic beam method can work up to 50-100 K

3)  $\overline{H}$  atoms can be guided with inhomogeneous magnetic field



## **CERN'S ANTIPROTON DECELERATOR**

0.



## **CERN'S ANTIPROTON DECELERATOR**



## **ANTIHYDROGEN PRODUCTION** $e_{\neq} TRAP$ B=0.3T



**p** TRAP B=2.5T

H-HFS ÖPG/SPS 2013, Linz, September 2013

Chloé Malbrunot

e+ source

## **ANTIHYDROGEN PROPERTIES**

Ultra-low temperature antihydrogen are not necessary for a beam experiments (unlike trap experiments).

BUT cold antihydrogen is better for:

1) Polarisation intensity

- 2) Cascading time: lower n state
- 3) Interaction time with the microwave field in the cavity

SIMULATION WITH GEANT 4

Behaviour of antiproton and positron plasmas simulated using **SIMBUCA** Formation of antihydrogen simulated CTMC

Pipeline between these simulations and Geant4



### **THE SPECTROMETER LINE (2012)**







### THE MICROWAVE CAVITY



Helmholtz coils 0-10G static field high stability power supply Field Stability <0.025% @ 4G (<1mG)

beam stopper: stop particles coming from the center of the CUSP

cavity length 10 cm MW frequency: 1.42GHz

Q~100

000

shielding

Numerical solving of the Bloch equations

H-HFS PANIC 2014, Hamburg

August 2014

Chloé Malbrunot

### THE MICROWAVE CAVIT



1420.44

1423.24

## **DETECTOR IMPROVEMENTS**

1 layer of hodoscope.

Read out on both side

### **Detector:**

0000000

00

• combination of calorimeter (distinction between  $\overline{H}$  and  $\overline{H}$  annihilation products) and tracking detector

addition of a 2nd layer of hodoscope (vertex reconstruction)



events in the detector (2012)

SIMULATION: cosmics simulated with CRY 1.7 in G4

Assuming 2012 experimental conditions, S/N ratio of ~10 ~50% detection efficiency





online display with simulated  $\overline{\mathbf{H}}$  annihilation

## **SILICON PM DEVELOPMENTS**

### Read-out:

Faster read-out, improvement of the SiPM readout electronics

computer controlled gain

each channel self triggering (e.g for calibration).
computer controlled trigger threshold for each -SiPM channel

differential digital and analogue signal transmission



H-HFS PANIC 2014, Hamburg

Further S/N enhancement using timing cut







**TEST SETUP WITH HYDROGEN BEAM (LS1)** 



|                                    | Ĥ beam                                      | H beam                                                             |
|------------------------------------|---------------------------------------------|--------------------------------------------------------------------|
| Beam rate at production (4 $\pi$ ) | small (≈10 <sup>3</sup> /minute)            | high (≈10 <sup>19</sup> /minute)                                   |
| Quantum state                      | broad distribution                          | GS                                                                 |
| Detection efficiency               | detector 0.4 to 0.6<br>solide angle (≈10⁻⁴) | detector (≈10 <sup>-8</sup> )<br>solide angle (≈10 <sup>-6</sup> ) |
| Detection method                   | Energy deposit, tracking                    | ionization and single ion<br>counting                              |
| Background                         | cosmics, upstream<br>annihilation           | residual gas<br>background>>signal (LIA)                           |

H-HFS PANIC 2014, Hamburg

# **TEST SETUP WITH HYDROGEN BEAM (LS1)**





# **TEST SETUP WITH HYDROGEN BEAM (LS1)**





0

00000

 $\odot$ 

### **Polarized beam:**

0.

000

focusing effect of cold atoms Phase can be compared to a laser beam Estimation of the temperature of the beam







H-HFS PANIC 2014, Hamburg

### Simulation:

00000

- Numerical solving of optical Bloch equ.
- Single velocity
- No field inhomogeneity
- Theoretical lineshape: input for the spline fit





#### **Measurements:**

- Source temperature at 50K
- Finite velocity distribution

H-HFS PANIC 2014, Hamburg

Illustration of a measurement and spline fit



Velocity consistent with temperature of the source: 50K

PANIC 2014, Hamburg

**H**·HFS

0000000

Fitting the theoretical curve to the data Helmholtz coil currents: external B field is a fit parameter

0



Fitting the theoretical curve to the data Helmholtz coil currents: external B field is a fit parameter

00000

0



PANIC 2014, Hamburg

**H**·HFS

Best beam measurement

 $\nu = 1420.40573(5) \text{ MHz}$  $\frac{\Delta \nu}{\nu} = 3.5 \times 10^{-8}$ 

Kusch. Physical Review. 100, 4 (1955)

• Maser experiments

 $\nu = 1420.405751768(1)\,\mathrm{MHz}$ 

$$\frac{\Delta\nu}{\nu} = 7 \times 10^{-13}$$

N.F. Ramsey et al., Quantum Electrodynamics, World Scientific, Singapore, 1990, p. 673

> Observation of  $\boldsymbol{\pi}$  transition in Earth magnetic field Further measurements with  $\boldsymbol{\pi}$  planned

H-HFS PANIC 2014, Hamburg

August 2014

 $\nu = 1420.405757(9) \text{ MHz}$  $\frac{\Delta \nu}{\nu} = 6.5 \times 10^{-9}$ This work

## **SUMMARY AND OUTLOOK**

- Construction of a antihydrogen detector ongoing. Ready for 2014 beamtime
- Extensive Monte Carlo simulation done/ongoing
- Full spectroscopy beamline is ready for the beamtime
- Precise σ Resonance (ppb) measured in Hydrogen Majorana spin flip is not affecting the signal Resonance width is small
   π resonance to be measured
- Systematics study being finalized
- ppm precision measurement of v<sub>H</sub> in sight "cold" beam Ground state at the cavity Factor ≈10 more statistics

0

0.

( ) ( ) ( )





Pioneer 10 (1973)









H-HFS PANIC 2014, Hamburg

### ACKNOWLEDGEMENTS



#### ASACUSA Scientific project

- (1) Spectroscopy of p
  He
- (2) p
  annihilation cross-section
- (3) H production and spectroscopy

### The H team

**University of Tokyo, Komaba:** K. Fujii, N. Kuroda, Y. Matsuda, M. Ohtsuka, S. Takaki, K. Tanaka, H.A. Torii

**RIKEN**: Y. Kanai, A. Mohri, D. Murtagh, Y. Nagata, B. Radics, S. Ulmer, S. Van Gorp, Y. Yamazaki

Tokyo University of Science: K. Michishio, Y. Nagashima

Hiroshima University: H. Higaki, S. Sakurai

**Univerita di Brescia**: M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo

Stefan Meyer Institut für Subatomare Physik: M. Diermaier, C. Malbrunot (CERN), C. Jepsen (CERN), O. Massiczek, C. Sauerzopf, M. Simon, K. Suzuki, E. Widmann, M. Wolf, J. Zmeskal







RIKEH



### THANK YOU FOR YOUR ATTENTION