Measurement of $\sigma_{1/2}$ and $\sigma_{3/2}$ in Photoproduction of $\pi^0\pi^0$ Pairs off Neutrons in the Nucleon Resonance Region

Manuel Dieterle

PANIC 2014

Hamburg, August 28th 2014

BASEL

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000	00	000000	O	
Outline				

Motivation	Experiment	Analysis	Results	Summary & Conclusions
• 0 0	00	000000	O	o

Motivation

Different resonance contributions to proton and neutron

 \Rightarrow Use polarization observables to identify amplitudes and quantum numbers

 $3/15 = \sigma_{1/2}$ and $\sigma_{3/2}$ in $\pi^0 \pi^0$ Photoproduction off Neutrons in the Nucleon Resonance Region

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000				

Polarization Observables

$$\begin{split} \frac{d\sigma}{d\Omega}(\theta,\phi) &= \frac{d\sigma}{d\Omega}(\theta) \cdot \left[1 - \rho_{\gamma}^{lin} \Sigma(\theta) \cos(2\phi) \right. \\ &+ \rho_x \cdot \left(-\rho_{\gamma}^{lin} H(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} F(\theta) \right) \\ &- \rho_y \cdot \left(+ \rho_{\gamma}^{lin} P(\theta) \cos(2\phi) - T(\theta) \right) \\ &- \rho_z \cdot \left(-\rho_{\gamma}^{lin} G(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} E(\theta) \right) \end{split}$$

P_{γ}			$P_T \cdot \tilde{\epsilon}$	ē;
		x	У	Ζ
unpol	σ	-	Т	-
linearly	-Σ	H	-P	-G
circularly	-	F	-	-E

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000				

Polarization Observables

$$\begin{split} \frac{d\sigma}{d\Omega}(\theta,\phi) &= \frac{d\sigma}{d\Omega}(\theta) \cdot \left[1 - \rho_{\gamma}^{lin} \Sigma(\theta) \cos(2\phi) \right. \\ &+ \rho_{x} \cdot \left(-\rho_{\gamma}^{lin} H(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} F(\theta) \right) \\ &- \rho_{y} \cdot \left(+ \rho_{\gamma}^{lin} P(\theta) \cos(2\phi) - T(\theta) \right) \\ &- \rho_{z} \cdot \left(-\rho_{\gamma}^{lin} G(\theta) \sin(2\phi) + \rho_{\gamma}^{circ} E(\theta) \right) \end{split}$$

P_{γ}			$P_T \cdot \tilde{e}$	i,
		x	у	Z
unpol	σ	-	Т	-
linearly	-Σ	H	-P	-G
circularly	-	F	-	-E

Double Polarization Observable E

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000	00	000000	0	0

Double Polarization Observable E

 $\label{eq:C:Photon Spin} C:= \mbox{Photon Spin} \quad Z:= \mbox{Target Spin} \quad \pm := \mbox{in/against z-direction}$

$$\sigma(\mathbf{C},\mathbf{Z}) + \sigma(\mathbf{C},-\mathbf{Z}) = 2\sigma(\mathbf{C},\mathbf{0})$$

 $\sigma(\mathbf{C},\mathbf{Z}) + \sigma(-\mathbf{C},\mathbf{Z}) = 2\sigma(\mathbf{0},\mathbf{Z})$

 $\sigma(\mathbf{C}, 0) = \sigma(0, \mathbf{Z}) = \sigma_{unpol}$ (only for two-body state)

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000	00	000000	0	0

Double Polarization Observable E

C:= Photon Spin Z:= Target Spin \pm := in/against z-direction

$$\sigma(\mathbf{C},\mathbf{Z}) + \sigma(\mathbf{C},-\mathbf{Z}) = 2\sigma(\mathbf{C},\mathbf{0})$$

$$\sigma(\boldsymbol{C},\boldsymbol{Z}) + \sigma(-\boldsymbol{C},\boldsymbol{Z}) = 2\sigma(\boldsymbol{0},\boldsymbol{Z})$$

$$\sigma(\mathbf{C}, 0) = \sigma(0, \mathbf{Z}) = \sigma_{unpol}$$
 (only for two-body state)

$$\Rightarrow E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\frac{2\sigma_{unpol}}{\text{direct}}}$$

• use quasi-two-body state $(\pi^0\pi^0)$

Motivation	Experiment	Analysis	Results	Summary & Conclusions
	•0			

Motivation	Experiment	Analysis	Results	Summary & Conclusions
	•0			

Motivation	Experiment	Analysis	Results	Summary & Conclusions
	•0			

Motivation	Experiment	Analysis	Results	Summary & Conclusions
	•0			

Motivation	Experiment	Analysis	Results	Summary & Conclusions
	00			

Experiment MAinzer MIcrotron

- Two Experiments: July 2013 / February 2014
- Photon beam energies [0.4, 1.5] GeV
- Target: \sim 2cm CD₉OD (d-Butanol) / ¹²C
- Detectors:
 - Crystal Ball (CB):
 - surrounding the target
 - Two Arm Photon Spectrometer (TAPS):
 - placed as forward wall
 - $\sim 4\pi$ steradian

Motivation	Experiment	Analysis	Results	Summary & Conclusions
		00000		

Reaction Identification

$$\gamma + \mathbf{p}(\mathbf{n}) \rightarrow 2\pi^0 (\rightarrow 4\gamma) + \mathbf{p}(\mathbf{n})$$

Reaction	Requirement	
on Proton	4 neutral (2 π^0)	
	1 charged (p)	
on Neutron	4 (5) neutral $(2\pi^0 (+n))$	
	0 charged	

 χ^2 -test: Reconstruct the $2\pi^0$ out of the neutral particles

Motivation	Experiment	Analysis	Results	Summary & Conclusions
000	00	00000	0	0

Reaction Identification

 $\Delta \phi = 360^{\circ} - |\phi_{2\pi^0} - \phi_N| \qquad \Delta M = |\mathbf{P}_{\mathsf{Beam}} + \mathbf{P}_N - \mathbf{P}_{2\pi^0}| - m_N$

10/15 $\sigma_{1/2}$ and $\sigma_{3/2}$ in $\pi^0 \pi^0$ Photoproduction off Neutrons in the Nucleon Resonance Region

 $\sigma_{1/2}$ and $\sigma_{3/2}$ in $\pi^0 \pi^0$ Photoproduction off Neutrons in the Nucleon Resonance Region

12/15 $\sigma_{1/2}$ and $\sigma_{3/2}$ in $\pi^0 \pi^0$ Photoproduction off Neutrons in the Nucleon Resonance Region

13/15

Motivation	Experiment	Analysis	Results	Summary & Conclusions
				•

Summary & Conclusions

- Clean reaction identification
- Carbon contribution under control
- Preliminary results of double polarization observable E on quasi-free protons and neutrons
- First results on the neutron
- Input for theoretical models

Thanks for your attention

This work is supported by:

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation Deutsche Forschungsgemeinschaft

DFG

Experimental Settings

Beam Energy	1558 MeV	
Photon Beam	circularly polarized	
Mean Beam Polarization	$ < P_e > \approx 85\% (P_{\gamma}(1 GeV) \approx 69\%)$	
D-Butanol Target	longitudinally polarized	
Mean Target Polarization	$< P_T > pprox 65\%$	
Duration	2 Weeks (9d 2013, 5d 2014)	
Background Measurements	Carbon (3 days 2014)	
	LD ₂ (2 Weeks 2009)	

$$P_{\gamma} = P_{e} \cdot \frac{4E^{*} - E^{*} \cdot E^{*}}{4 - 4E^{*} + 3E^{*} \cdot E^{*}} \qquad E^{*} = \frac{E_{\gamma}}{E_{e}}$$

Charged Particle Identification in CB

500

Particle Identification in TAPS

Particle Identification in TAPS

E vs ToF

Particle Identification in TAPS

15/15 $\sigma_{1/2}$ and $\sigma_{3/2}$ in $\pi^0 \pi^0$ Photoproduction off Neutrons in the Nucleon Resonance Region