CONSTRAINTS ON NEW PHENOMENA THROUGH HIGGS COUPLING MEASUREMENTS WITH THE ATLAS DETECTOR

Camilla Maiani for the ATLAS Collaboration 26.08.2014 PANIC2014

STATE-OF-THE-ART

- \star Higgs-like particle discovered in summer 2012 by ATLAS and CMS ^[1-2]
- \star Mass of the new-found particle about 125.5 GeV ^[3-4]
- \star Spin-parity compatible with a J^P = 0⁺ particle ^[5-7]
- \star Couplings measurement consistent with SM expectations [3-4] compatible

C.Maiani 26.08.2014 PANIC2014

Physics Motivation

The new-found particle is compatible with a SM Higgs

Is the Higgs sector extended?

the presence of a family of Higgs bosons may help answering a number of fundamental open questions:

- * Hierarchy problem: why is the Higgs boson mass unnaturally small?
- * Dark Matter: looking for DM candidates via the "Higgs portal"
- → indirect searches for BSM models (Higgs compositeness, Higgs singlet, 2Hdoublet, MSSM, dark matter) with the Higgs coupling measurements^[8] →prospects of such searches at HL-LHC^[9]

ANALYZED DATA

- ★ Full Run-1 ATLAS data sample used ~25 fb⁻¹
- * Combination of the couplings is used to constrain BSM parameters
- Rates measured in all decay channels:
 - \star h \rightarrow $\gamma\gamma$
 - ★ h → ZZ* → 4ℓ
 - ★ h → WW* → $\ell \nu \ell \nu$
 - **★** h → ττ
 - ★ h → bb̄
 - ★ + $Zh \rightarrow \ell \ell E_T^{miss}$ limits

[Higgs portal to DM]

★ Other direct searches are **not** considered

COUPLING MEASUREMENTS

★ Measured couplings to vector-bosons, fermions

 \rightarrow compatible with the SM within ~1.5 σ

STATISTICAL TREATMENT

- ★ Confidence intervals are based on the profile likelihood ratio test statistic $\mathbf{t}_{\alpha} = -2 \ln \Lambda(\alpha)$ likelihood ratio $\mathbf{A} = -2 \ln \Lambda(\alpha)$ $\mathbf{A}(\alpha) = \frac{L(\alpha, \hat{\Theta}(\alpha))}{L(\hat{\alpha}, \hat{\Theta})}$ μ, m_h, κ, Θ systematic uncertainties → nuisance parameters Θ
- ★ L(α, Θ(α)) → product of the likelihoods in each channel
 ★ In each channel → likelihood is the sum of the signal and background pdfs for the signal/background discriminating variable
 ★ signal pdf → MC simulation, background pdf → data and MC

TWO-HIGGS-DOUBLET MODELS

 \star Extension where the Higgs sector is extended by an additional doublet: \star two neutral CP-even \rightarrow h and H \star one neutral CP-odd \rightarrow A \star two charged bosons \rightarrow H[±] Different couplings to vector bosons and fermions are tested all satisfying the Glashow-Weinberg condition ★ ex: type II (MSSM-like) → one doublet couples to up-type quarks, the other to down-type quarks and leptons.

limits consistent with SM expectations

SIMPLIFIED MSSM

- ★ A simplified Minimal
 Supersymmetric SM
 (MSSM) is probed via
 Higgs couplings to:
 - ★ vector bosons (W, Z)
 - up-type fermions(mainly top)
 - * down-type fermions (mainly bottom and τ)
- ★ For tanβ>2, lower limit on
 CP-odd Higgs mass is: m_A
 > 400 GeV obs. (290 GeV exp.)

still large unexplored region for $\tan\beta > 1$

HIGGS PORTAL TO DARK MATTER

★ The Higgs boson may decay invisibly to new particles: $\chi \rightarrow m_{\chi} < m_{h}/2$

Upper limit set on the Higgs invisible branching ratio:

 BR_{inv} < 0.37 obs. (0.39 exp.)
 ★ WIMP-nucleon scattering crosssection → ATLAS dominates in the low mass region

THE LHC PROGRAM

Broad physics program in the Higgs sector:

- **★** Couplings and rare decays $(H \rightarrow \mu \mu, Z\gamma, J/\psi\gamma?)$
 - \rightarrow test of the SM and indirect searches for new physics
- ★ Direct searches for BSM
- ★ Search for CP violation in the Higgs sector

MEASUREMENTS PERSPECTIVES

Couplings

- **★** Experimental precisions of ~1.5% on κ_V and ~3% on κ_f are expected with 3000 fb⁻¹ (3.5% and 8.5% with current theoretical uncertainties)
- ★ ~2.5%on κ_V and 7% on κ_f are expected with 300 fb⁻¹ (3.5% and 8.5% with current theoretical uncertainties)

ATLAS-PHYS-PUB-2013-014/15/16

Expected limits with 95% CL on the invisible branching ratio of the Higgs boson

	300 fb ⁻¹	3000 fb ⁻¹
From ZH→II+invisible	[23,32]%	[8,16]%
From coupling measurements	[25,28]%	[12,15]%

Higgs to invisible

CONCLUSIONS

- ★ The measured Higgs boson couplings and their mass dependence, invisible BR and vacuum expectation value are compatible with the SM expectation
- ★ Limits are set on new physics phenomena by using the Higgs coupling measurements extracted with the full ATLAS data sample in all decay channels available → no hints for new physics up to now
- ★ Still a lot of margin for new physics to be discovered at the HL-LHC !

BIBLIOGRAPHY

- ★ [1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep-ex];
- [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex];
- ★ ^[3] ATLAS Collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88, arXiv:1307.1427 [hep-ex][;]
- ★ ^[4] CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013);
- ★ [5] ATLAS Collaboration, Evidence for the spin-o nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120, arXiv:1307.1432 [hep-ex];
- ★ ^[6] CMS Collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803, arXiv:1212.6639 [hep-ex];
- ★ [7] CMS Collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, arXiv:1312.5353 [hep-ex];
- * ^[8] ATLAS Collaboration, Constraints on new phenomena via Higgs boson couplings measurements with the ATLAS detector, ATLAS-CONF-2014-010;
- * ^[9] ATLAS Collaboration, Sensitivity to new phenomena via Higgs couplings with the ATLAS detector at the High-Luminosity LHC, ATL-PHYS-PUB-2013-015.

BACKUP SLIDES

ELECTROWEAK FIT WITH GFITTER

blue line: full SM fit

prey band: fit without M_H measurement included \rightarrow gives $M_H = 94^{+25}-22$ GeV, 1.3 σ from the measured value

Mass Scaling and Vacuum Expectation

★ The couplings mass dependence and the vacuum expectation value are also consistent with the SM^[8]

HIGGS BOSON COMPOSITENESS

★ A composite Higgs boson is a possible solution to the hierarchy problem

- ★ Limits at 95% CL are set on the **compositeness scale** *f*
- **★** Two Minimal Composite Higgs Models (MCHM) are considered:
 - ★ MCHM4 → f > 710 GeV
 - ★ MCHM5 → f > 460 GeV

MCHM4 and MCHM5 Parameterisations

In the MCHM4 model [26], the ratio of the predicted couplings to their SM expectations can be written in the particularly simple form:

$$\kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi},\tag{7}$$

Similarly, in the MCHM5 model [27, 28] the measured rates are expressed in terms of ξ by rewriting the couplings as:

$$\kappa_V = \sqrt{1 - \xi}$$

$$\kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}}.$$
(8)

(here:
$$\xi = (v/f)^2$$
)

Additional EW Real Singlet

- ★ Simplest extension of the SM: additional singlet → two nondegenerate CP-even Higgs bosons (h, H)
- ★ Measuring $\kappa' \rightarrow$ H coupling strength reduction factor ($\kappa' = 0$ in SM) ★ Unitarity is conserved: $\kappa^2 + \kappa'^2 = 1$
- *** Obs. κ'² = 1-μ**_h **= -0.30 +0.17 -0.18** (Exp. κ'² = 0 +0.15 -0.17)
- ★ 95% CL upper limit: κ'² < 0.12 obs. (<0.29 exp.)

2HDM PARAMETERS

The Glashow-Weinberg condition is satisfied by four types of 2HDMs [38]:

- Type I: One Higgs doublet couples to vector bosons, while the other couples to fermions. The first
 doublet is "fermiophobic" in the limit of no mixing.
- Type II: This is an "MSSM-like" model, in which one Higgs doublet couples to up-type quarks and the other to down-type quarks and leptons.
- Type III: This is a "lepton-specific" model, where the Higgs bosons have the same couplings to quarks as in the Type I model and to leptons as in Type II.
- Type IV: This is a "flipped" model, where the Higgs bosons have the same couplings to quarks as in the Type II model and to leptons as in Type I.

Coupling scale factor	Type I	Type II	Type III	Type IV
ĸv	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
Ku	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
ĸd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
ĸı	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

Table 2: Couplings of the light Higgs boson *h* to weak vector bosons (κ_V), up-type quarks (κ_u), down-type quarks (κ_d), and leptons (κ_l), expressed as ratios to the corresponding SM predictions in 2HDMs of various types.

2HDM RESULTS /1

2HDM RESULTS /1

