

BERGISCHE UNIVERSIT

Beyond-the-Standard Model Higgs physics using the ATLAS experiment PANIC 2014 – Hamburg

Gunar Ernis on behalf of the ATLAS Collaboration

Bergische Universität Wuppertal Fachbereich C - Physik

Hamburg, 26th August 2014

Gunar Ernis

tandard Model Extensions

Bergische Universität Wuppertal - FB C Physik

Why ask for more?

http://arxiv.org/abs/1207.7214

- On 4th July 2012 a new particle was found.
- **Today:** It's pretty much SM-Higgs like.
- But that does not explain...
- ... Dark matter/ dark energy.
- ... Matter/ antimatter asymmetry.
- ... The hierarchy problem.

Popular SM extensions

Bergische Universität Wuppertal - FB C Physik

In the **2HDM** one has two, complex scalar SU(2) doublets Φ_i = (Φ[±]_i, Φ⁰_i)^T
 Assuming no FCNC and lepton flavour violation this leads to...

5 2HDM particles	6 parameters
\mathcal{CP} even: h , H	$m_{\rm h}, m_{\rm H}: CP$ even masses
$\mathcal{CP} \text{ odd} : \mathbf{A}$	$m_{\mathbf{A}}$: \mathcal{CP} odd masses
	$m_{\mathbf{H}^{\pm}}$: Charged masses
Charged : \mathbf{H}^{\pm}	lpha : Mixing angle
	tan β : Ratio of vev's

- The Higgs sector of the MSSM is equivalent to the 2HDM, but is constraint.
- ...and it has of course SUSY particles.

MSSM constraints

$$\begin{aligned} &-\frac{\pi}{2} \le \alpha \le 0 \\ &m_{\mathsf{h},\mathsf{H}}^2 = \frac{1}{2}(m_{\mathsf{A}}^2 + m_Z^2 \mp \sqrt{\Delta}) \\ &m_{\mathsf{H}^{\pm}} = m_{\mathsf{A}}^2 + m_W^2, \text{ with} \\ &\Delta = (m_{\mathsf{A}}^2 + m_Z^2)^2 - 4m_{\mathsf{A}}^2 m_Z^2 \cos^2(2\beta), \end{aligned}$$

Generic Model Searches

BERGISCHE UNIVERSIT WUPPERTA

- The **search range** varies between:
- 65 GeV 600 GeV for $X
 ightarrow \gamma \gamma$
- 200 GeV 900 GeV for $\mathbf{H} \rightarrow ZZ \rightarrow 4\ell$
- 260 GeV 1000 GeV for $\mathbf{H} \rightarrow WW \rightarrow \mu\nu e\nu$
- Similar analysis strategies have been applied.

earch channels

```
 \begin{array}{l} \mathsf{X} \to \gamma \gamma \\ \mathsf{H} \to WW \to \mu \nu \, e\nu \\ \mathsf{H} \to ZZ \to 4\ell \end{array}
```

arXiv:1407.6583 ATLAS-CONF-2013-067 ATLAS-CONF-2013-013

Analysis strategies:

$$\begin{array}{l} \mathsf{X} \to \gamma \gamma \\ \mathsf{H} \to WW \to \mu \nu \, e\nu \\ \mathsf{H} \to ZZ \to 4\ell \end{array}$$

cut based, $m_{\gamma\gamma}$ fits cut based, $m_{\rm T}$ fit cut based, $m_{4\ell}$ fit

The $X \rightarrow \gamma \gamma$ search

BERGISCHE

Mass range:

Low mass region: 65 GeV $< m_X < 110$ GeV High mass region 110 GeV $< m_X < 600$ GeV

Backgrounds:

Selection:

- Two γ's with high p_T
- Strong isolation criteria for $\gamma {\rm 's}$
- Low mass: Three photon categories
- High mass: Relative cuts on $\frac{E}{n}$

No evidence for an additional scalar diphoton resonance can be seen!

Gunar Ernis

The $\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$ search

Mass range:

260 GeV - 1000 GeV

Backgrounds:

 $\begin{array}{lll} \text{Dominant:} & WW \text{ and } t\overline{t}/Wt \\ & Z/\gamma^* \rightarrow \tau\tau \rightarrow \mu\nu e\nu \\ & W+\text{jets} \\ \text{Minor:} & W\gamma^{(*)}, WZ^{(*)} \end{array}$

Selection:

- Only $\mu\nu e\nu$ channel is used
- Two opp. sign high p_T leptons
- Large *E*^{miss.}
- *b*-jet veto in 1 and 2 jet channels

Generic Model Searche

Bergische Universität Wuppertal - FB C Physik

The $\mathbf{H} \rightarrow ZZ \rightarrow 4\ell$ search

BERGISCHE UNIVERSITÄT WUPPERTAL

Mass range:

Light Higgs: 80 GeV – 170 GeV Heavy Higgs: 170 GeV – 900 GeV

Backgrounds:

Irreducible: qu Reducible: D

$$q\bar{q}/gg \rightarrow ZZ$$

DY/Z+jets
 $t\bar{t}$

Selection:

- Two opp. sign high p_T lepton pairs with same flavour
- One lepton pair: $m_{\ell\ell} \sim m_Z$
- Small impact parameter

A SM-like heavy Higgs can be **excluded** up to \sim 650 GeV!

Dedicated BSM searches

- **Different approach**: Exploit the properties of BSM models
- Goal: Find something or exclude parameter spaces
- **MSSM**: Search for a neutral Higgs boson in the mass range: 90 GeV - 1000 GeV
- **2HDM**: Search for a neutral \mathcal{CP} even Higgs boson in the mass range: 135 GeV - 300 GeV

 $\Phi \rightarrow \tau \tau$ ATLAS-CONF-2014-049 $\mathbf{H} \rightarrow WW \rightarrow \mu\nu e\nu$ ATLAS-CONF-2013-027

Advantages of dedicated searches

- The 125 GeV Higgs can be included into the model
- Higgs states might not be independent of each other
- Coupling ratio is fixed in a generic analysis, but might be different in BSM models

MSSM: $\Phi \rightarrow \tau \tau$ search

Mass range:

Low mass region: 90 GeV - 200 GeV High mass region: 200 GeV - 1000 GeV

Backgrounds:

Dominant: $Z/\gamma^* \rightarrow \tau \tau$

$t\bar{t}$, multijets DY/Z+jets

- Three channels: $\tau_e \tau_{\mu}$, $\tau_{\text{lep}} \tau_{\text{had}}$ and $\tau_{had} \tau_{had}$
- Two categories: *b*-tag and *b*-veto
- Mass reconstruction with MMC algorithm

Grey area: Incompatible with a 125 GeV Higgs

Excluded range: $\sigma \times BR > 29$ pb to

2HDM: $\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$ search

BERGISCHE UNIVERSITÄT WUPPERTAL

Mass range:

135 GeV – 300 GeV

Backgrounds:

0 jets: $WW/WZ/ZZ/W\gamma^{(*)}$ W+jets 2 jets: $t\bar{t}/Wt/tq/t\bar{b}$ DY/Z+jets

Selection:

- Two high p_T DF leptons
- Large E_T^{miss.}
- Two VBF tagging jets
- Reject *b*-tagged jets
- Usage of artificial neural networks

Artificial Neural Networks

- Networks are trained at three mass points
- with 6/9 input variables in 0/2 jet channel

2HDM: $\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$ details

Exclusion limits

 Limits are calculated for type I and type II 2HDM

	Type I	Type II
$\xi_{\mathbf{H}}^{V}$	$\cos(eta-lpha)$	$\cos(\beta - \alpha)$
сu	$sin \alpha$	$\frac{\sin \alpha}{2}$
SH	$\sin \beta$	$\sin \beta$
ċd	$\sin \alpha$	$\cos \alpha$
SH	$\sin \beta$	$\cos \beta$
¢Ι	$\sin \alpha$	$\cos \alpha$
SH	$\sin \beta$	$\cos \beta$

- Confidence level is calculated for each (tan β, cos α, m_H)-triplet
- Null hypothesis: SM with light Higgs

No evidence for a heavy Higgs boson is found. Large parts of parameter space can be excluded.

Conclusion

- A variety of searches for BSM Higgs bosons were performed by ATLAS.
- Many decay channels have been considered:
 - Generic model searches: $X \to \gamma \gamma$, $H \to WW \to \mu \nu e \nu$, $H \to ZZ \to 4\ell$
 - **Dedicated searches**: $\Phi \rightarrow \tau \tau$, $\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$
- Still, no deviation from the SM could be found...

... but:

- Limits on cross sections and branching ratios could be set
- The parameter space of BSM models could be constraint
- Look forward to Constraints on new phenomena through Higgs coupling measurements with the ATLAS detector
- ATLAS will continue its search for BSM physics in 2015 with the new 13–14 TeV data.

Stay tuned!

BERGISCHE Universität Wuppertal

BACKUP SLIDES

Gunar Ernis

$X \rightarrow \gamma \gamma$: Selection details and samples

BERGISCHE UNIVERSITÄT WUPPERTAL

Selection details:

Data samples:

- Two photons with E_T > 22 GeV and |η| < 2.37</p>
- Jets reduction: $E_{\rm T}^{\rm iso.} < 6$ GeV, where $E_{\rm T}^{\rm iso.}$ is defined as the sum of transverse energies within a cone of $\Delta R = 0.4$.
- High mass category: $E_{\rm T}^{\gamma_1/\gamma_2}/m_{\gamma\gamma} > 0.4/0.3$
- $m_{\gamma\gamma}$ uses both photon energies, the azimuthal angle $\Delta\phi$ and the pseudorapidity $\Delta\eta$.
- Dominant background: γγ, γ-jet, jet-jet events and DY production

ggF	Powheg+Pythia8
VBF	Powheg+Pythia8
$7 \rightarrow ee$	Powheg+Pythia8

$X \rightarrow \gamma \gamma$: Photon categories

The invariant mass distribution of the Z boson reconstructed as a photon pair is wider and shifted to lower masses by up to 2 GeV with respect to the Z boson mass reconstructed as an electron pair.

 The solid lines show the sum of the Drell-Yan and the continuum background components. The dashed lines show the continuum background component only.

$\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$: Selection and samples

- DF only is used to reduce DY bkg from pile up
- $p_{T}(\ell_{i}) > 40 \text{ GeV}$
- $E_{\rm T,rel}^{\rm miss.} > 25/20 \,\, {\rm GeV}$
- Reject DY events: $p_T(\ell \ell) > 30 \text{ GeV}$
- Events compatible with a $Z \rightarrow \tau \tau$ decay are rejected by requiring $|m_{\tau\tau} - m_Z| \ge 25 \text{ GeV}$

Data samples:	
Background	MC generator
Higgs	Powheg+Pythia8
$qar{q}/gq ightarrow WW$	Powheg+Pythia6
gg ightarrow WW	GG2WW+Herwig
tī	MC@NLO+Herwig
tW, tb	MC@NLO+Herwig
tqb	AcerMC+Pythia6
Z/γ^*	Alpgen+Herwig
$WZ/W\gamma^*$	Powheg+Pythia8
$W\gamma^*$	MadGraph+Pythia6
$W\gamma$	Alpgen+Herwig

BERGISCHE

$\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$: Statistics

- Define likelihood function using $m_{\rm T}$ distribution.
- Use bins of variable width o have the same number of expected background events in each bin.
- Use q_{μ} as test statistic:

$$q_{\mu} = -2 ln \left(rac{\mathcal{L}(\mu; \hat{ heta}_{\mu})}{\mathcal{L}(\hat{\mu}; \hat{ heta})}
ight)$$

- $\begin{array}{l} \hat{\mu}, \hat{\theta}: \text{ unconditionally maximise } \mathcal{L} \\ \mu; \hat{\theta}_{\mu}: \text{ maximise } \mathcal{L} \text{ for a given } \mu \end{array}$
- Each systematic is parametrised by a corresponding nuisance parameter θ, constrained by a Gaussian function.

$\textbf{H} \rightarrow ZZ \rightarrow 4\ell:$ Selection and samples

BERGISCHE UNIVERSITÄT WUPPERTAL

- Two same-flavour, opp. sign lepton pairs
- $p_{\rm T}(\ell_{1/2/3}) > 20/15/10 \,\,{
 m GeV}$
- SF: $\Delta R > 0.1$, DF: $\Delta R > 0.2$
- Leading di-lepton mass:
 50 GeV < m₁₂ < 106 GeV
- Subleading di-lepton mass: $m_{\min} < m_{34} < 115$ GeV, with $m_{\min} \in [12, 50]$ GeV
- Reduce Z+jets and $t\bar{t}$: Impact parameter significance $\frac{d_0}{\sigma_{d_0}} < 3.5(6.5)$

Bata Samples.	
Background	MC generator
ggF/VBF	Powheg+Pythia8+Photos
WH/ZH/ttH	Pythia
$qar{q}/gq ightarrow ZZ$	Powheg+Pythia6
gg ightarrow WW	gg2ZZ+Herwig
ZZ*qq′	Sherpa

Data samples

MSSM: $\Phi \rightarrow \tau \tau$: MMC details

- The MMC algorithm assumes that the missing transverse momentum is due entirely to the neutrinos, and performs a scan over the angles between the neutrinos and the visible \(\tau\) decay products.
- The MMC mass, m^{MMC}_{ττ}, is defined as the most likely value chosen by weighting each solution according to probability density functions that are derived from simulated τ lepton decays.
- Left plots: Reconstructed MMC mass for the low mass region in the tag and veto categories with a hypothetical MSSM signal with $m_{\rm h} = 150 \, {\rm GeV}, \tan \beta = 20$

2HDM: $\mathbf{H} \rightarrow WW \rightarrow \mu \nu e \nu$: Selection and samples

- DF only is used to reduce DY bkg from pile up
- $p_{\rm T}(\ell_{1/2}) > 25/15 \,\,{
 m GeV}$
- *m*(ℓℓ) > 10 GeV
- $E_{T,rel}^{miss.} > 25 \text{ GeV}$
- 0 jets: $|\Delta \phi(\ell_1, \ell_2)| < 2.4$, $m(\ell \ell) < 75 \text{ GeV}$
- = 2 jets: *b*-veto, $m_{\rm T}$ < 180 GeV, $m(\ell \ell)$ < 80 GeV

Data samples:	
Background	MC generator
ggF	Powheg+Pythia8
VBF	Powheg+Pythia8
WH/ZH	Pythia8
$qar{q}/gq ightarrow WW$	Powheg+Pythia6
gg ightarrow WW	GG2WW+Herwig
tī	MC@NLO+Herwig
tW, tb	MC@NLO+Herwig
tqb	AcerMC+Pythia6
Inclusive W	Alpgen+Herwig
Inclusive Z/γ^*	Alpgen+Herwig
$Z^{(*)}Z^{(*)} ightarrow 4\ell$	Powheg+Pythia8
$WZ/W\gamma^*$	Powheg+Pythia8
$W\gamma^*$	MadGraph+Pythia6
$W\gamma$	Alpgen+Herwig

Input variables of		
the Neural Networks		
0 jets	2 jets	
$ \eta(\ell_1) $		
$m_{ m T}$		
$m(\ell_1\ell_2)$		
$p_{\mathrm{T}}(\ell_1\ell_2)$	$p_{\mathrm{T}}(\ell_2)$	
$E_{ m T,rel}^{ m miss}$	$p_{\mathrm{T}}(j_1)$	
$ \Delta Y(\ell_1 \ell_2) $	$m(j_1)$	
	$\cos heta(\ell_1,\ell_2)$	
	$m(j_1j_2)$	
	${\pmb ho}_{ m T}^{ m tot}$	

BERGISCHE

UNIVERSITÄT WUPPERTAL

Charged Higgs Boson Searches

BERGISCHE UNIVERSITÄT WUPPERTAL

Charged Higgs in $t\bar{t}$ decays

- arXiv:1302.3694
- Mass range: 90 GeV 150 GeV

■ The decay H⁺ → cs̄ is investigated

2HDM Cascade

- arXiv:1312.1956
- Mass range: 225 GeV 925 GeV

 Boosted decision trees are used for the separation from tt

Charged Higgs in $t\bar{t}$ decays

Mass range:

90 GeV - 150 GeV

Backgrounds:

Dominant: $t\overline{t}$ single top $WW/WZ/ZZ/W\gamma^{(*)}$ DY/Z+jets

Selection:

- One high p_T lepton
- Large E^{miss.}
- **T**wo light jets with $m_{
 m jj}pprox m_{
 m H^+}$
- Kinematic fitter: Reco of the tt̄ system

No significant deviation from SM!

2HDM Cascade

Mass range:

225 GeV - 925 GeV

Backgrounds:

Selection:

- One high p_T lepton
- Large E_T^{miss.}
- Four high p_T jets (two b-tagged)
- BDT is trained with seven variables ⇒ optimised for cross-section limits

