Measurement of the Higgs boson mass with the ATLAS detector

Oliver Kortner

Max-Planck-Institut für Physik München

PANIC 2014, 25.08.2014

Measurement of the mass of the Higgs boson

- Measurement based on 2011 and 2012 LHC pp collision data corresponding to 4.5 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV.
- Mass obtained from a simultaneous fit to the $m_{\gamma\gamma}$ and $m_{4\ell}$ ($\ell = e, \mu$) spectra.

• Original mass measurement (Phys. Lett. B 726 (2013) 88)

 $m_H = \left[125.5 \pm 0.2 (\text{stat})^{+0.5}_{-0.6} (\text{sys}) \right] \text{ GeV}$

o minated by the systematic uncertainties on the γ , e, μ energy scales. • Topic of this talk: m_H measurement with highly reduced energy scale uncertainties due to improved calibration procedures.

Inner detector and e.m. calorimeter for e/γ detection

Electron and photon reconstruction

- $E_{e/\gamma}$ = sum of the energies of the calorimeter cells associated to the e/γ corrected for energy loss due to absorption in the passive material and leakage outside the cluster.
- Previous calibration of the energy measurement:
 - 1. Gain of the individual amplifiers determined periodically with test pulses.
 - 2. Simulation and test-beam based corrections.
 - 3. Energy scale correction derived from $Z \rightarrow e^+e^-$ decays.
- A more advanced calibration strategy has been adopted for the updated Higgs mass measurement (see next slide).

Refined calibration of the e/γ energy scale

- 1. Cell energy calibration with test pulses
- 2. Intercalibration of the different calorimeter layers
 - No muon energy loss before the ECAL.
 - \Rightarrow Intercalibration of layers 1 to 3 with muons from *Z* decays.
 - Relative calibration of the presampler with electrons as a function of the longitudinal shower development in the ECAL.
- 3. Determination of the material in front of the EM calorimeter
 - Measurement of the material between the presampler and the first layer with unconverted photons as a function of the longitudinal shower development.
 - Integral material in front of the presampler is extracted from the difference of electron and unconverted photon longitudinal shower profiles.
- 4. Global calorimeter energy scale adjustment with $Z \rightarrow e^+e^-$ events

Energy scale uncertainties

Checks of the e/γ energy scale

- $J/\psi \rightarrow e^+e^-$ probes the electron energy scale at low $E_{\rm T} \sim 7 \dots 35$ GeV.
- $Z \rightarrow \ell^+ \ell^- \gamma$ probes the photon energy scale for $E_{\rm T} \sim 30$ GeV.

Total energy scale uncertainties

Main source of the scale uncertainties

- Non-linearity of the E measurement at cell level: $\sim 0.1\%.$
- Relative calibration of the different calorimeter layers: ~ 0.1 %.
- Material in front of the calorimeter: $0.1 \dots 0.3\%$.

Muon reconstruction

Energy/momentum measurements

• Calo- and segment tagged muons:

 $p_{muon} = p_{ID}.$

Stand-alone muons:

 $p_{muon} = p_{MS} + E_{loss}.$

Combined mouns:

 $p_{muon} = \text{Combination}(p_{ID}, p_{stand-alone}).$

⇒ Calibrating the momentum scale only with $Z \rightarrow \mu^+ \mu^-$ data does not reduce the uncertainty of the energy loss correction.

 \Rightarrow New calibration uses $Z \rightarrow \mu^+ \mu^-$ and $J/\psi \rightarrow \mu^+ \mu^-$ decays.

• Use of $Z \to \mu^+ \mu^-$ and $J/\psi \to \mu^+ \mu^-$ decays in the calibration procedure reduces the muon momentum scale uncertainty from $\sim 0.1\%$ to $\sim 0.01\%$.

$H\to\gamma\gamma$ selection and event categories

Requirements

- 2 isolated high $p_{\rm T}$ photons:
 - $|\eta| < 2.37, |\eta| \notin [1.37, 1.56]$ $E_{\rm T}^{(1)} > 0.35m_{\gamma\gamma}$ $E_{\rm T}^{(2)} > 0.25m_{\gamma\gamma}$
- Main background: γγ continuum production. Significantly smaller contributions from γj and jj.

To improve the m_H measurement accuracy 10 event categories are used.

Both photons uncoverted				≥1 photon converted			
"central"	"transition"	"rest"		"central"		"transition"	"rest"
(ŋ _{1,2} <0.75)	(1.3< η _{1 or 2} <1.75)			(η _{1,2} <0.75)		(1.3< η _{1 or 2} <1.75)	
P _T (γγ)<70 GeV P _T (γγ)>70 GeV		P _T (γγ)<70 GeV	P _τ (γγ)>70 GeV	P _T (γγ)<70 GeV	P _T (γγ)>70 GeV		$P_{T}(\gamma\gamma)$ <70 GeV $P_{T}(\gamma\gamma)$ >70 GeV

The categories differ from each other in $\frac{S}{B}$, $\sigma(m_{\gamma\gamma})$, systematic uncertainties.

Invariant mass resolution

$$m_{\gamma\gamma} = 2E_{\gamma_1}E_{\gamma_2}\left[1 - \cos(\theta(\gamma_1, \gamma_2))\right]$$

Thanks to the longitudinal segmentation of the electromagnetic calorimeter $z_{\gamma_{1,2}}$ is known with 15 mm precision.

 $\Rightarrow \sigma (m_{\gamma\gamma}) \text{ is dominated by the } \gamma \text{ energy resolution!} \\\Rightarrow \sigma (m_{\gamma\gamma}) \sim 1.7 \text{ GeV at } m_{\gamma\gamma} \sim 125 \text{ GeV.}$

Fit function for the simultaneous fit of the $m_{\gamma\gamma}$ spectra of the 10 categories

- Linear combination of signal and background functions.
- Signal: Crystal Ball with category dependent resolutions.
- **Background**: Category dependent analytic functions.
- Free parameters:
 - Signal strength $\mu_{\gamma\gamma}$;
 - Higgs boson mass m_H ;
 - Background function parameters;
 - Nuisance parameters for systematic uncertainties.

Measured Higgs boson mass in the $H \rightarrow \gamma \gamma$ channel

New result

 $m_{H} = [125.98 \pm 0.42 ({\rm stat}) \pm 0.28 ({\rm syst})] ~{\rm GeV}$

with $\mu_{\gamma\gamma} = 1.29 \pm 0.30$.

Old result

$$m_{H} = [126.8 \pm 0.2 ({\rm stat}) \pm 0.7 ({\rm syst})] ~~{\rm GeV}$$
 with $\mu_{\gamma\gamma} = 1.55.$

Comments

- Shift of m_H to lower value than before due to new calibration.
- Increased statistical error on m_H compared to before due to reduced signal strength.
- Reduced systematic uncertainty on m_H compared to before thanks to reduced photon energy scale uncertainty.

$H \rightarrow ZZ^* \rightarrow 4\ell$ selection and event categories

Requirements

- 2 pairs of isolated same-flavour, opposite-sign leptons (e or μ) from a common vertex.
- Invariant mass requirement:

 $50 \; \mathrm{GeV} < m_{12} < 106 \; \mathrm{GeV}$

- To improve the m_{4ℓ} resolution: FSR recovery and Z mass constraint.
- Main background: ZZ^* continuum production. Small contributions from Z + jand $t\bar{t}$.

To improve the m_H measurement accuracy 4 event categories are used: 4μ , 4e, $2\mu 2e$, $2e2\mu$. The categories differ from each other in $\frac{S}{B}$, $\sigma(m_{4\ell})$, systematic uncertainties.

Mass measurement procedure in the $H \to ZZ^* \to 4\ell$ channel

Multivariate discriminant to distinguish ZZ^* background from $H \rightarrow ZZ^*$ signal: "BDT_{ZZ} output".

Cross checks:

Fit function for the simultaneous fit of the BDT $_{ZZ}$ output versus $m_{4\ell}$ spectra of the 4 categories

- Linear combination of a 2D signal and a 2D background distribution.
- The 2D signal and ZZ distributions are taken from MC samples, the reducible background shape is data-driven.

• Fit parameters:

- Signal strength $\mu_{4\ell}$;
- Higgs boson mass m_H ;
- Nuisance parameters for systematic uncertainties.
- ${\scriptstyle \circ}$ Simultaneous fits of the 1D m_ℓ distributions like in the past.
- Simultaneous fits of the 2D distributions taken into account per-event $m_{4\ell}$ resolution values.

Measured Higgs boson mass in the $H \to ZZ^* \to 4\ell$ channel

 Individual mass measurements in the 4 categories lead to compatible results.

New result

 $m_H = [124.51 \pm 0.52 (\text{stat}) \pm 0.06 (\text{syst})] \text{ GeV}$ with $\mu_{4\ell} = 1.66^{+0.45}_{-0.38}$.

Old result

$$m_H = \begin{bmatrix} 124.3^{+0.6}_{-0.5}(\text{stat})^{+0.5}_{-0.3}(\text{syst}) \end{bmatrix} \text{ GeV}$$
 with $\mu_{4\ell} = 1.43^{+0.40}_{-0.35}$.

Comments

- Shift of m_H to slightly higher value than before due to new electron energy calibration.
- Increased signal strength compared to before due to increased m_H value.
- Reduced systematic uncertainty on m_H compared to before thanks to reduced lepton energy/momentum scale uncertainty.

New result

$$m_H = [125.36 \pm 0.37(\text{stat}) \pm 0.18(\text{syst})]$$
 GeV

$$m_H = \left[125.49 \pm 0.24 (\text{stat})^{+0.50}_{-0.58} (\text{syst}) \right] \text{ GeV}$$

Comments

- Shift of m_H to slightly smaller value than before due to the lower m_H value in the $H \rightarrow \gamma \gamma$ channel.
- Increased statistical error on m_H compared to before due to increased statistical uncertainty of m_H in the $H \rightarrow \gamma \gamma$ channel.
- Compatibility between the m_H measurements in the $H \to \gamma \gamma$ and $H \to ZZ^* \to 4\ell$ channels is 2.0σ compared to 2.5σ before.

BONUS SLIDE

- The $H \to 4\ell$ data were used to set an upper limit on the natural width Γ_H of the Higgs boson.
- Γ_H was added as a free parameter to the 3D fit while fixing m_H to the measured value.

 $\Gamma_H < 2.6~{\rm GeV}$ at 95% CL

Expected limits:

- $\Gamma_H < 6.2$ GeV for $\mu_{4\ell} = 1$.
- $\Gamma_H < 3.5 \text{ GeV}$ for $\mu_{4\ell} = 1.66$.