Top quark pair production at the LHC in ATLAS

Spyros Argyropoulos (on behalf of the ATLAS collaboration)

Particles and Nuclei International Conference Hamburg, 26/8/2014

Overview

I. Top quark properties

- i. Mass
- ii. Charge
- iii. Polarization
- iv. Charge asymmetry

II. tt+jets differential measurements

<u>III. tt+W/Z</u>

IV. Top decays

- i. Spin correlations
- ii. W polarization

V. New physics searches FCNC

Top properties: Mass

- measurements in all decay channels: all hadronic, lepton+jets, dilepton
- different measurement methods with different sensitivities to systematics
- two main classes of measurements:

Direct mass measurement

- Measurement of m_{top} from reconstruction of top system
- usually done with template method using different final state observables
- most recent measurements have precision < 1%

Indirect mass measurement

- from inclusive and tt+jet crosssection (precision < 4.7 %)
- using B-hadron lifetime, J/ψ final states, kinematic endpoints

Top properties: Charge

Motivation

- Model proposing exotic quark with charge -4/3 and mass equal to the SM top mass
- improve Tevatron exclusion limits (2-3 σ)

Measurement

- exploit correlation between charges of top decay products $SM: t^{(2/3)} \rightarrow b^{(-1/3)} + W^{(+1)} \qquad XM: t_X^{(-4/3)} \rightarrow b^{(-1/3)} + W^{(-1)}$
- $Q_b Q_l = -1/3$ for SM and +1/3 for exotic model
- Q_b defined as a weighted sum of b-jet track charges: $Q_b = \frac{\sum_i Q_i |j \cdot \vec{p_i}|^{1/2}}{\sum_i |\vec{j} \cdot \vec{p_i}|^{1/2}}$
- lepton+jet events, 2 fb⁻¹ of 7 TeV data

Result

- Q_t = 0.64 \pm 0.02_{stat} \pm 0.08_{sys}
- exotic model excluded by more than 8σ

Top properties: Polarization

Motivation

- in SM top quarks are produced with negligible polarization
- BSM models (e.g. axigluon) can generate polarization of top quarks

<u>Measurement</u>

 double differential cross-section with respect to polar angles of decay products

 $\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta_{\ell^+}d\cos\theta_{\ell^-}} = \frac{1}{4}(1+P_1\cos\theta_{\ell^+}+P_2\cos\theta_{\ell^-}-C\cos\theta_{\ell^+}\theta_{\ell^-})$

- lepton+jets and dilepton tt events, 4.7fb⁻¹ of 7TeV data

Result

 polarization of top quarks compatible with SM prediction

θ

P-

$$\alpha_{\ell} P_{\rm CPC} = -0.035 \pm 0.014_{\rm stat} \pm 0.037_{\rm sys}$$
$$\alpha_{\ell} P_{\rm CPV} = 0.020 \pm 0.016(\text{stat})^{+0.013}_{-0.017}(\text{sys})$$

PRL, 111 232002 [arXiv:1307.6511v2]

Top properties: Charge Asymmetry

Motivation

- top charge asymmetry is sensitive to new physics
- 2-3 σ excess observed by CDF, D0 / growing to 3.4 σ for m_{tt} > 450 GeV (CDF)

What is measured

- charge asymmetry is a NLO effect arising from the interference of (Born \times Box) and (ISR \times FSR) diagrams
- asymmetry expected to be small at LHC since the dominant contribution is from gg fusion (C-symmetric)
- measure A_C as a function of m_{tt} , $p_T(tt)$, y_{tt}

Result

- all measurements compatible with SM prediction

- $A_C = 0.006 \pm 0.010$ $A_{C}^{SM} = 0.0123 \pm 0.0005.$

6

tt+jets differential measurements

Motivation

- test QCD predictions at hard scales
- important background for SUSY searches
- constrain ISR/FSR in top events and other modeling uncertainties that affect other measurements (top mass, inclusive tt cross-section) <u>Measurement</u>

- unfolded to stable particle level

Results

- measurement can
 distinguish between
 models
- MC@NLO+Herwig gives too soft
 spectrum for 5th jet
- data favor lower α_s
 in Alpgen+Pythia
 model

7

tt + W/Z

Motivation

- couplings of top to $\boldsymbol{\gamma}$ and \boldsymbol{Z} have not been measured
- BSM physics (e.g. technicolor) could modify couplings
 <u>Measurement</u>
- events with 2 or 3 leptons with same or opposite sign

	same sign dimuon	opposite sign dilepton (Z veto)	opposite sign dilepton	trilepton	trilepton (Z veto)
Z-mass selection	-	$ m_{\parallel}-m_Z > 10 \text{ GeV}$	$ m_{\parallel}-m_Z < 10 \text{ GeV}$	m _{ll} -m _Z < 10 GeV	$ m_{II}-m_Z > 10 \text{ GeV}$
Signal	ttW dom.	ttZ and ttW	ttZ dom.	ttZ	ttW dom.
Main background	ttZ, ttH, fakes	tt+jets	Z+jets	tZ, WZ, fakes	ttZ, ttH, fakes

8

<u>Result</u>

- evidence for ttZ and ttW production
- signal strength and cross-section measurements in agreement with SM expectation

$$\begin{aligned} \sigma_{t\bar{t}Z} &= 150^{+55}_{-50}(\text{stat.}) \pm 21(\text{syst.}) \text{ fb} \\ \sigma_{t\bar{t}W} &= 300^{+120}_{-100}(\text{stat.})^{+70}_{-40}(\text{syst.}) \text{ fb} \end{aligned}$$

Top decays: W polarization

Motivation

- probe Lorentz structure of Wtb vertex
- search for anomalous Wtb couplings

<u>Measurement</u>

<u>Result</u>

- W helicity fractions compatible with SM

h

e⁺

W

 no anomalous Wtb couplings found improvement of limits set by Tevatron

JHEP 1206 (2012) 088 [arXiv:1205.2484v1]

Top decays: Spin Correlations

Motivation

- probe BSM physics in top production or decay
- top production: MSSM/2HDM Higgs, heavy Z
- top decay: top decaying to MSSM Higgs
 Measurement
- angular distribution of top decay products $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{\ell^+} d\cos\theta_{\ell^-}} = \frac{1}{4} (1 - C\cos\theta_{\ell^+} \theta_{\ell^-}) \cdots t$ with different quantization axes (requires top reconstruction)
- Matrix element ratio correlation/no-correlation
- azimuthal angles $\Delta \varphi(\ell^+, \ell^-), \Delta \varphi(\ell,d), \Delta \varphi(\ell,b)$

Result

 measurements in agreement with SM prediction

Searches: FCNC in top decays

Motivation

- sensitive to physics beyond SM
- MSSM, 2HDM, RPV SUSY, extra dimensions...

Measurement

- signal: $t\bar{t} \to Z(\to \ell^+ \ell^-) q \ W^-(\to \ell^- \nu) \bar{b}$
 - 3 leptons, > 1 jet, MET
- backgrounds: processes with fake leptons or real leptons (WZ,ZZ)
- dominant systematic: diboson modeling

<u>Result</u>

- no evidence for signal
- observed limit ${\rm BR}(t\to qZ)<0.73\%$ compatible with expected sensitivity

Top physics with ATLAS

- rich top physics program with 7 and 8 TeV data related to:
 - top quark properties (mass, charge)
 - properties of top production and decay
 - measurements of associated production with vector bosons
 - searches for new physics phenomena

All measurements are in agreement with SM so far.

Prospects for HL-LHC

- increase of center-of-mass energy to 14 TeV and integrated luminosity to 3 ab⁻¹
- probe rare processes, e.g.
 - di-top resonances: up to 2.4 TeV [ATLAS-PHYS-PUB-2013-003]
 - FCNC expected limits of the order of BR= $O(10^{-4})$ approaching the BR that certain BSM models predict [ATLAS-PHYS-PUB-2013-012]