Precision test of the Standard Model with Kaon decays at CERN

T. Spadaro*, on behalf of the NA62 collaboration *Frascati National Laboratory of INFN

Kaon physics – The landscape

Kaon is the lightest strange particle, studied since 60's to test fundamental properties of nature

The SM @ $E \sim M_{K}$ appears remarkably simple:

 $L_{SM} = L_{QCD}(m_u = m_d, m_s) + L_{QED} + L_{IB}(m_u - m_d) + L_{ew}$

only 2 parameters in L_{QCD} : m_s and m_d ~m_u ~ (m_d+m_u)/2

 L_{OED} and L_{IB} isospin-breaking: often neglected, but add 3rd parameter

breaks many symmetries: P, CP, flavor

2

Kaons reach the highest sensitivity to CPT violation, QM tests

Competitive with B decays to test NP in LFV or CPV transitions

K physics – past, present, future

Precise study of low-energy L_{QCD} , including L_{QED} and L_{IB} :

Strong $\pi\pi$ phase shifts from non-leptonic K decays, e.g., Ke4 see P. Cenci's talk

Radiative decays, testing contributions from NLO ChPt, see F. Costantini's talk

30 years of precision study of L_{ew} :

 $|\varepsilon_{K}| = (2.221 \pm 0.006) | 0^{-3}$, significant CKM constraint (progress on B_{K} , now @ 1.3%!)

 $R(\epsilon'/\epsilon) = (16.8 \pm 1.4)10^{-4}$, will be a NP test soon, w lattice progress to beat uncertainty from cancellations btw e.m. and strong penguins

Gauge universality test: CKM unitarity satisfied @ < 10⁻³ level from main K decays

LFV search (test H⁺ exchange) from RK = Ke2/K μ 2 at NA62, this talk

Lepton number violation test from $K^{\pm} \rightarrow \pi \mu^{\pm} \mu^{\pm}$ at NA48/2, this talk

The future towards high-intensity/sensitivity frontier, this and G. Ruggiero talks

LFV – Search for NP signals from K decays

Lepton number violation in $K^+ \rightarrow \pi^- \mu^+ \mu^+$

Transition possible in NP, if mediated by a Majorana neutrino, \mathbf{v}

Expected BR depends on effective v mass

If $100 < M_V < 300$ MeV, v is kinematically accessible \rightarrow limits on coupling from K decays are most stringent than from any other source

From bkg evaluation to 400 $\pi^+\mu^+\mu^-$ events:

5

BR < 3x10⁻⁹ [E865 collaboration PRL85(2000)2877]

Setup of the NA48/2 experiment

NA48/2: unseparated, simultaneous K[±] highly collimated beams, designed to precisely measure K[±] $\rightarrow \pi^{+,0}\pi^{-,0}\pi^{\pm}$ dalitz-plot density

Analysis of $K \rightarrow \pi \mu \mu$ at NA48/2

Scintillator hodoscope:

• establish event time (σ ~150 ps), fundamental for L1 trigger

DCH online reconstruction and vertex at L2 trigger

LKr calorimeter: efficient vetoing, excellent e.m. energy resolution

• $\sigma_{\rm E}/{\rm E}$ = 3.2%/ $\sqrt{{\rm E}[{\rm GeV}]}$ \oplus 9%/ ${\rm E}[{\rm GeV}]$ \oplus 0.42%

• $\sigma_{x,y}$ = 4.2mm/ $\sqrt{E[GeV]} \oplus$ 0.6 mm, granularity of 13,248 2×2 cm² cells

Hadron calorimeter, Muon veto system (MUV)

Analysis samples acquired in 2003-4:

K_{πμμ}: 3-track trigger (hodoscope), I vertex from 3 DCH tracks, 2 of them with MUV hits

 $K_{\pi\pi\pi}$: trigger, acceptance cuts common with $K_{\pi\mu\mu}$, used as normalization Normalization sample equivalent to 1.4x10¹¹ K decays in FV

Analysis of $K \rightarrow \pi \mu \mu$ at NA48/2

Total invariant mass for correct- vs wrong-sign events

52 candidates $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$, vs 52.6±19.8_{syst} expected from MC: BR($K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$) < 1.1×10⁻⁹ @ 90% CL [PLB 697(2011)107]

Improves on previous results by x3

Settle the road for future major improvements at NA62, see later

Motivations for a precise measurement of RK SM prediction @ 0.04%, benefits of cancellation of hadronic uncertainties (no f_{K}): $R_{K} = \Gamma(Ke2)/\Gamma(K\mu2) = 2.477(1) \times 10^{-5}$ [Cirigliano Rosell arXiv:0707:4464]

Helicity suppression as NP boost [Masiero PRD74(2006)011701, JHEP0811(2008)042]

In R-parity MSSM, LFV can induce O(1%) effect [Girrbach, Nierste, arXiv:1202.4906]:

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \ \tan^6 \beta \right]$$

 H_U

B

 ℓ_R

NP contribution from ev_{τ} state, eff. coupling Δ^{31}_{R} from b-ino/s-tau loop

In MSSM, NP << 0.1% after Higgs, $B \rightarrow \tau v$, $\mu \mu$ [Fonseca et.al, EPJ C72 (2012) 2228]

... but NP @ >1% in SM + sterile fermions in Inverse see-saw [Abada, et al.: JHEP 1302 (2013) 48, JHEP 1402 (2014) 091]

Experimental accuracy was $\delta R_{\kappa} \sim 1.3\%$ (KLOE)

Analysis of Ke2/K μ 2 at NA62 – 2007 data

After experience with NA48/2, design of NA62 run optimized for R_{K} :

Analysis of Ke2/Kµ2 at NA62: μ background Analysis starting samples:

K_{e2} trigger: I trk (hodoscope) & I-trk activity in DCH's & E_{LKr}>10 GeV

 $K_{\mu 2}$ trigger: I trk (hodoscope) & I-trk activity in DCH's, downscaled

Electron ID by LKr: (0.90 to 0.95) $\leq E_{cl}/P_{trk} \leq 1.10$, μ rejection by $\sim 10^{6}$!

Electron ID efficiency: 99.28(5)%, check probability for μ's to fake e's [~4×10⁻⁶, due to the so-called muon "catastrophic" energy loss] by direct measurement:

II Precision SM test w K decays at CERN - PANIC2014 - Hamburg (Germany) 25/8/2014

Analysis of Ke2/Kµ2 at NA62: µ background

Analysis of R_K for the 4 configurations: K⁺/K⁻ Lead bar/No lead bar Analysis tuned in lepton momentum bins, allowing reliability check of μ mis-ID evaluation, bkg subtraction, and acceptance correction

Analysis of Ke2/Kµ2 at NA62: other backgrounds World largest Ke2 data set, 145958 K⁺e2 candidates, 10.95(27)% bkg

2013 NA62 RK result and error budget

Entire data set: $R_{K} = 2.488(7)_{stat}(7)_{syst} | 0^{-5} [PLB 7|9 (20|3) 326]$

Source	δR _K (ΙΟ-5)	ۍ 29 ×2
Statistics	0.007	а то то
Kµ2 bkg	0.004	ients 0
Ke2γ SD+ bkg	0.002	surem
Ke3, $\pi\pi^0$ bkg	0.003	Meas
Muon halo bkg	0.002	2
Material budget	0.002	2
Acceptance corr	0.002	
DCH alignment	0.001	
Electron ID	0.001	
I TRK trigger eff	0.001	_
LKr readout eff	0.001	
Total	0.010	

Fit over 40 independent measurements, 10 lepton momentum bins × 4 configurations: χ^2 / Nd.o.f. = 47/39 (P = 18%)

RK final result, impact for NP search: MSSM

K

40

2HDM-I

R_k=2.488(9)×10⁻⁵

tanβ 06

80

70

60

Compare present world average with

 $R_{\kappa}(SM) = 2.477(1)10^{-5}$

including possible NP from H⁺:

Error ~10 that of SM prediction, room for future improvements with NA62

RK NA62 result, impact for sterile neutrinos

Probe NP from sterile v's w inverse see-saw [Abada et al. JHEP 1402 (2014) 091]

 $\Delta r_{\kappa} = R_{\kappa}(NA62)/R_{\kappa}(SM) - I$ M_{κ} enhancement 10^{2} **Color code:** m_k4 NA62 excluded 10⁰ **All high-energy** experimental bounds, B and τ decays, $\Gamma(Z \rightarrow vv)$, 10⁻² μ Exp etc. + cosmological bounds satisfied 10⁻⁴ **Cosmological bounds** (Large scale structure, **Lyman**- α data, X-ray 10⁻⁶ searches, etc.) relaxed Models excluded by 10⁻⁸ 10^{-2} 10⁻⁶ 10⁶ 10-4 10^{2} 10^{4} 100 present $\mu \rightarrow e\gamma$ MEG result Mass of lightest sterile neutrino (GeV)

Searching for direct production of sterile v's

Search using Kµ2 selected data (normalization channel for R_K), ~ 18 M Evts

Expect sizable improvements with new NA62

Major beam and detector upgrades for $K^+ \rightarrow \pi^+ \nu \nu$, see talk by G. Ruggiero

	NA48/2	NA62-RK	NA62
Data taking	2003-4	2007-8	2014-17
Primary intensity (ppp)	7 × 10 ¹¹	7 × 10 ¹¹	3 × 10 ¹²
Solid angle (µsterad)	~0.4	~0.4	~12.7
Beam momentum (GeV)	60	74	75
RMS momentum bite (GeV)	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P_T kick, MeV	120	265	270
$M(K \rightarrow \pi^+ \pi^-)$ resolution, MeV	1.7	1.2	0.8
K decays in fiducial region	2 × 10 ¹¹	2 × 10 ¹⁰	1.2 × 10 ¹³
Main trigger	Multi-track, K-> $\pi^+\pi^0\pi^0$	1e+-	K-> π_{VV} +

New: beam spectrometer, efficient γ vetoes at large angle, redundant PID

Fully flexible, FPGA-based trigger: - LI SW single-detector based, 100 KHz out L2 SW full info, output few KHz

Intensity allowing LFV searches from K decays...

3-track decay parasitic to main trigger w L0 bandwidth of O(10 kHz)

With acceptances of few to ten % efficiency, prospects to reach SES of 10-12

... for example, $K + \rightarrow \pi^{-}\mu^{+}\mu^{+}...$ Major improvements expected at NA62

NA48/2: bkg to $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ from $K^{\pm} \rightarrow \pi^{\mp} \pi^{\pm} \pi^{\pm} + \pi^{\pm} \rightarrow \mu^{\pm} \nu$ in the spectrometer

NA62: negligible background thanks to redundant PID capabilities

Resolution on invariant mass $\sigma_M(\pi^{\mp}\mu^{\pm}\mu^{\pm}) \sim 2.6$ (1.1) MeV @ NA48/2 (NA62)

Expect a factor of 100 to 1000 improvement at NA62

...and from π^0 decays...

One year of data taking yields $1.3 \times 10^{11} \pi^{0}$'s from $K \rightarrow \pi \pi^{0}$

Intense π^0 "tagged beam" allowing many promising studies

Feasibility studies started on several decays

Mode	Observable	NP Motivation	SM	Present	Experiment
$\pi^0 \rightarrow 3\gamma$	BR	C-violation	Forbidden	< 3.1 × 10 ⁻⁸	Crystal Box, 1988
$\pi^0 \rightarrow 4\gamma$	BR, kinematics	Light exotic scalars	10 ⁻¹¹	< 2 × 10 ⁻⁸	Crystal Box, 1988
$\pi^0 \rightarrow inv$	BR	RH neutrinos, LFV	< 10 ⁻¹³ (Cosm. limit)	< 3 × 10 ⁻⁷	E949, 2005
$\pi^0 \rightarrow e\mu$	BR	LFV	Forbidden	< 4 × 10 ⁻¹⁰	KTeV, 2008
$\pi^0 \rightarrow eeee$	Kinematics	SI, em T-Viol, off- shell vectors	3.26(18) × 10 ⁻⁵	3.34(16) × 10 ⁻⁵	KTeV, 2008
$\pi^0 \rightarrow ee\gamma$	Kinematics	Dark vector bosons	No boson	Several exclusions	Several
22 Busician SM test will descent CERNL RANKC2014 (Lawland (Commun)) 25/0/2014					

... for example a study of π^0 ->ee γ ...

Search for a U boson, dark-force mediator, from the chain $\pi^0 \rightarrow U\gamma$, U \rightarrow ee

U boson enters as NP contribution to muon g-2:

$$: \Gamma_{U o e^+ e^-} = rac{1}{3} lpha \epsilon^2 M_U \sqrt{1 - rac{4m_e^2}{M_U^2}} \left(1 + rac{2m_e^2}{M_U^2}
ight)$$

For $M_U < 2 M\mu$, and effective coupling $\epsilon \sim 10^{-3}$ width is $\sim eV$: U decay is prompt

Analysis in progress at NA48/2

At NA62: acquire w 3-track trigger + PID: rate sustainable, expect 10^8 candidates/year e⁺e⁻ invariant mass resolution ~ 1 MeV Expect ~ 10^2 sensitivity improvement for $30 < M_{\rm H} < 100$ MeV, up to $\varepsilon^2 ~ 10^{-6}$

...and from other mesons

Mesons produced at target might decay to long-lived exotic particles reaching the NA62 decay volume

The simplest signatures correspond to two-body (semi)leptonic decays: πe , $\pi \mu$ (sterile neutrinos) or ee, $\mu \mu$ (Dark vectors, see later)

Conclusions: NA62 past, present, and future In 2007-2008, NA62 "RK phase":

• Runs with original NA48/2 detector, beam carefully tuned for the measurement of $R_{K} = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$, now at 0.4%

• Data acquired with NA48/2 still useful for Lepton Number violation studies: $K^{\pm} \rightarrow \pi \mu^{\pm} \mu^{\pm}$ at 10⁻⁹

• Parallel R&D studies for new sub-detectors, new NA62 approved by CERN research board at December 2008

From 2009, developing the new NA62 experiment:

• In 2011-2014, construction & commissioning: dry & technical runs

• At October 2014, first physics run after long shutdown, towards a 10% measurement of $K \rightarrow \pi v v$ in 2 years of data taking

• Prospects for improvements on many LFV and NP studies: Possible SES of ~10⁻¹² on K⁺ 3-track decays, ~10⁻¹⁰ on π^0 decays, sensitivity to sterile neutrino and NP vector searches: compete w KOTO, Trek @ J-Parc...

...obviously, after a fair amount of work!

