Search for the Higgs boson in fermionic channels using the ATLAS detector

Michel Trottier-McDonald on behalf of the ATLAS collaboration

Lawrence Berkeley National Laboratory

August 21, 2014

The SM Higgs Boson

- The BEH mechanism breaks the electroweak symmetry by introducing a new scalar field φ with potential V(φ, φ[†])
- 3 real d.o.f. of φ make the
 W[±] and Z bosons massive
- the 4th real d.o.f. becomes the **Higgs boson**
- The Higgs boson can have Yukawa couplings to fermions:
 - Coupling strength is proportional to the masses of the fermions
 - Replaces mass terms for fundamental fermions

 $\mathscr{L}_{\mathrm{Y}} = -h_{arphi}\left(ar{\psi}_{\!R} \phi^{\dagger} \psi_{\!L} \!+\! ar{\psi}_{\!L} \phi \,\psi_{\!R}
ight)$

Relevant Production Modes

Gluon-gluon Fusion (ggF)

19.27 pb $m_H = 125 \text{GeV}$ $\sqrt{s} = 8 \text{TeV}$

Vector Boson Fusion (VBF)

 $\begin{array}{l} \textbf{1.578pb} \\ m_H = 125 \text{GeV} \\ \sqrt{s} = 8 \text{TeV} \end{array}$

Associated Production (VH)

 $\begin{array}{l} \textbf{1.12pb} \\ m_H = 125 \text{GeV} \\ \sqrt{s} = 8 \text{TeV} \end{array}$

ATLAS Searches in the Fermionic Modes

	H ightarrow au au	$H o \mu \mu$	$\textbf{H} \rightarrow \textbf{b} \overline{\textbf{b}}$
Branching Fraction	6.32%	0.022%	57.7%
Most Difficult Background	$Z \to \tau \tau$	$Z ightarrow \mu \mu$	$gg ightarrow bar{b}$
Production Modes Exploited	VBF, ggF, VH*	VBF, ggF	ggF, VBF, VH, ttH*
Strategy	Boosted Decision Trees (BDT)	Analytical Fits	Cut-based

*: Not discussed in this talk

${\rm H} \rightarrow \tau \tau$ Channels

The search is divided in three channels:

42%

- 2 hadronic tau decays
- Missing E_T
- Any number of jets

 $au_{\mathsf{lep}} au_{\mathsf{had}}$ leptonic-hadronic

46%

- 1 hadronic tau decay
- 1 electron or muon
- Missing E_T
- Any number of jets

 $\tau_{\text{lep}} \tau_{\text{lep}}$ leptonic-leptonic 12%

- 2 electrons or muons
- More missing E_T
- Any number of jets

$H \rightarrow \tau \tau$ VBF Category: Definition and Topology

$H \rightarrow \tau \tau$ Boosted Category: Definition and Topology

$H \rightarrow au au$ Backgrounds

 $au_{\mathsf{had}} au_{\mathsf{had}}$

 $\tau_{\mathsf{lep}}\tau_{\mathsf{had}}$

 $\tau_{\mathsf{lep}} \tau_{\mathsf{lep}}$

- $Z \rightarrow \tau \tau$: data-driven, $Z \rightarrow \mu \mu$ data events where $\mu \rightarrow \tau$ (simulated)
- QCD: data-driven or negligible
- Top: MC normalized to data
- W: data-driven or MC normalized to data
- Others: MC with theory cross-section

M. T-McDonald (LBNL)

 $H \rightarrow f\bar{f}$ at ATLAS

August 21, 2014 8 / 18

H ightarrow au au Hypothesis Testing

- Signal Hypothesis: The Higgs boson *already* found (with $m_H \sim 125 \text{ GeV}$) decays to tau pairs
- Train 6 BDTs: for each channel/category
- Do a simultaneous fit on the 6 binned BDT scores + control regions
- Dominant uncertainties:
 - ggF cross-section
 - Jet energy scale
 - $Z \rightarrow \ell \ell$ and Top normalization

${ m H} ightarrow au au$ Results

Current Run I Results: **Expected:** 3.2 σ Observed: 4.1 σ $\sigma/\sigma_{SM} = 1.4^{+0.3}_{-0.3}$ (stat.)^{+0.4}_{-0.3}(syst.)

$\overline{\mathsf{H} ightarrow \mu \mu}$ Strategy

• Minimal event selection with 55% signal acceptance

$\mathsf{H} ightarrow \mu \mu$ Backgrounds

- The background and signal models are analytic:
 - Background Model: decreasing exponential/x³ + Breit-Wigner with gaussian smearing *
 - Signal:

Crystal Ball + Gaussian

- The backgrounds are fitted to data (MC used for studies and optimization only)
- The signal is fitted to Higgs MC samples, interpolated between available mass points

* different for VBF category

${ m H} ightarrow \mu \mu$ Results

Final Run I Results:

- Expected: $7.2 \times \sigma_{SM}$ 95% C.L.
- Observed: $7.1 \times \sigma_{SM}$ 95% C.L.
- Consistent with the Standard Model
- If Higgs lepton universality:
 - $B.R.(\tau\tau) = B.R.(\mu\mu)$
 - $H \rightarrow \mu\mu$ signal should be $\sim 283 \times$ larger!
 - Would have been seen by this search

$H \to b \bar{b}$ Strategy

- $gg \rightarrow b\bar{b}$ completely overwhelms VBF and ggF Higgs production
- VH production provides objects to trigger on: E_T^{miss} , electrons and muons

Z ightarrow u u	$W o \ell u_\ell$	$Z o \ell \ell$		
0 leptons	1 lepton	2 leptons		
Require two b-tagged jets				
$p_{\mathcal{T},j1} > 45 \; ext{GeV} \qquad p_{\mathcal{T},j2} > 20 \; ext{GeV} \qquad + \leq 1 \; ext{extra jet}$				
$E_T^{ m miss} > 120~{ m GeV}$	$E_T^{ m miss} > 25~{ m GeV}$	$E_T^{ m miss} < 60~{ m GeV}$		
	$m_{\pi}^{W} < 120 \text{ GeV}$	$83 < m_{\ell\ell} < 99$ GeV		

• Further sub-categorization based on p_T^V , $\Delta R(b, \bar{b})$, E_T^{miss} and m_T^W : 26 signal regions

M. T-McDonald (LBNL)

$H \rightarrow b\bar{b}$ Strategy (2)

- Simultaneous fit on $m_{b\bar{b}}$ distributions in the 26 regions
- Also use regions with less than 2 b-tagged jets in the fit to constrain background model
- 2 highest p^V_T bins:
 90% of the sensitivity

$H \to b \bar{b}$ Backgrounds

- The background composition varies quite a bit across categories
- QCD multijets background estimated from data:
 - $Z \rightarrow \nu \nu$: Normalization and shape extrapolation using 3 CRs
 - $W \rightarrow \ell \nu_{\ell}$: Extract QCD multijets template from CR: invert ℓ isolation
 - $Z \rightarrow \ell \ell$: Use $m_{\ell \ell}$ sidebands as CR to extract QCD multijets template
- Other backgrounds are modelled with MC:
 - Normalization of V+jets and $t\bar{t}$ backgrounds fitted to data using CRs
 - The rest are normalized using theoretical cross-sections
- Dominant uncertainty: dijet mass distribution for backgrounds

$H \rightarrow b\bar{b}$ Results

Expected: $1.3 \times \sigma_{\text{SM}}$ 95% C.L. Observed: $1.4 \times \sigma_{\text{SM}}$ 95% C.L. $\sigma/\sigma_{\text{SM}} = 0.2 \pm 0.5 \text{(stat.)} \pm 0.4 \text{(syst.)}$

M. T-McDonald (LBNL)

 $H \rightarrow f\bar{f}$ at ATLAS

August 21, 2014 17 / 18

Summary

- H ightarrow au au: Yukawa couplings to leptons have been directly observed
- ${f H}
 ightarrow \mu\mu$: The Higgs boson does not exhibit lepton universality, as expected
- In Run II:
 - \sim 4× the data (25fb⁻¹ \rightarrow 100fb⁻¹)
 - More than $2\times$ the Higgs production cross-section at 13 TeV
 - $\bullet \rightarrow 8-10 imes$ more signal than Run I

• Run II Goals:

- 5σ sensitivity for $H \rightarrow \tau \tau$, increased sensitivity for $H \rightarrow b\bar{b}$
- Observation of VH production mode in the fermionic channels
- CP measurement with $H \rightarrow \tau \tau$
- more precise experimental branching fractions