

Proton-lead measurements using the ATLAS detector

Martin Spousta (on behalf of the ATLAS collaboration)

Charles University in Prague

20th Particles and Nuclei International Conference, 25-29 August 2014, Hamburg, Germany

- Original motivation for p+Pb collisions:
 - to calibrate Pb+Pb measurements,
 - to understand initial state effects,
 - to study nuclear PDFs,

- ...

- •ATLAS results in "soft sector":
 - Charged particle spectra and multiplicities, R_{pPb}
 - Glauber-Gribov analysis for centrality
 - Ridge and flow
- ATLAS results in "hard sector":
 - Charged particle spectra at high-pt
 - Z-boson production
 - Jet production

... quite a lot of unexpected seen!

1 μb⁻¹ of 5.02 TeV p+Pb Minimum Bias events collected during September 2012
 30 nb⁻¹ of 5.02 TeV p+Pb, with various triggers in February 2013

Soft physics

100

200

 ΣE_{T}^{Pb} [GeV]

- Centrality determined using ΣE_{T} in Pb-going forward calorimeters ($\eta < -3.2$)
- $\langle T_{Pb} \rangle$ determined using Glauber and Glauber+Gribov model
 - Glauber:
 - fixed σ_{NN} (σ_{NN} = 70 ± 5 mb)
 - 🐵 incoming proton is off-shell between successive interactions!
 - Glauber+Gribov model:
 - allows for event-by-event fluctuations in $\sigma_{_{NN}}$, $\langle \sigma_{_{NN}} \rangle$ = 70 ± 5 mb
 - fluctuations quantified using parameter Ω
 - two choices for Ω (Ω =0.55, Ω =1.01) based on extraction from experimental data (see PLB 633 (2006) 245 and PLB 722 (2013) 347)

 $1/N_{evt} dN/d\Sigma E_{T}^{Pb} [GeV^{1}]$

10⁻⁵

10⁻⁶

- Glauber and Glauber+Gribov model can reproduce the measured centrality distribution => determination of $\langle T_{Pb} \rangle$ or $\langle N_{part} \rangle = \langle T_{Pb} \rangle^* \sigma_{NN} + 1$

• Increase between 0.1-2 GeV, decrease up to ~8 GeV, flattening above 8 GeV.

 \bullet Three different geometrical models used to extract $\langle T_{Pb} \rangle$

-> very different magnitude, but ratio of Cronin region to plateau stays similar

Charged particle multiplicity

Charged particle multiplicity per participant pair ... sensitivity to the choice of the model

- Glauber case: strong increase with $\langle N_{part} \rangle$
- Glauber+Gribov: only weak N_{part}

-> Clear need for understanding of **fluctuating nature** of nucleon-nucleon collisions and geometry of initial state

Hard Probes 2013

Charged particle R_{pPb} II.

ATLAS-CONF-2014-029

- Ratio of 0-90% p+Pb spectra to interpolated pp cross-section
- Three different interpolation methods of 2.76 TeV and 7 TeV cross-sections used to obtain the reference
- Seems to be confirming CMS observation of large **enhancement at high-pt**

Hard Probes 2013 Martin Spousta for ATLAS Collaboration

Martin Spousta for ATLAS Collaboration

PANIC 2014

PANIC 2014

- Difference between near-side and away-side integrated per trigger yields evaluated as a function of **two centrality measures**: number of charged particles, total FCal Et.
- Difference of yields compared with the estimated recoil contribution in the away side.
- Slow variation of the difference with centrality -> a presence of component of the same magnitude in the near side and away side

- Fourier coefficients v_1 - v_5 extracted using two particle correlation method.
- Significant v_1 - v_5 observed with similar trends as observed in heavy ion collisions.
- Excellent agreement of v_2 and v_3 with results from the CMS Collaboration.

Flow in p+Pb vs flow in Pb+Pb

- Basar+Teaney: p+Pb should be **rescaled** to account for a difference between mean pt in p+Pb and Pb+Pb.
- After rescaling same shapes observed => long-range ridge correlations in high-multiplicity p+Pb and peripheral Pb+Pb driven by similar dynamics.

PANIC 2014

Hard physics

Z-boson cross-section

Z-boson cross-section and yields

- Cross-section inclusive in flavor, shape differs from MC prediction
- Centrality dependence of yields, similar shape for different N_{coll} models, but magnitude strongly depends on the choice of the model

Z-boson production vs N_{part}

Jet yields and R_{pPb}

ATLAS-CONF-2014-024

- 0-90% R_{pPb} compared to NLO with EPS09 nPDFs
- R_{pPb} does not differ much from unity if measured inclusively in centrality, **but** ...

PANIC 2014

Jet R_{pPb} and R_{CP}

 $-0.8 < y^* < -0.3$

-2.1 < y* < -1.2

 $L^{\rm pPb}$ dt = 27.8 nb⁻¹

1000 p_ [GeV]

 L^{pp} dt = 4.0 pb⁻¹

100

- R_{CP} strongly varies with centrality exhibiting decrease with increasing pt in all three centrality bins.
- If R_{pPb} is unity and R_{CP} decreases then there must be **enhancement in peripheral collisions** wrt to pp. Indeed, this is observed.
- The use of Glauber-Gribov only amplifies these effects.

PANIC 2014

- R_{CP} scales with E~p = pt·cosh(y) in the forward (p-going) direction
 - production driven by x_p?
 - strong impact parameter dependence of number of partons available for hard scattering?
 - strong hard-soft correlations?

Conclusions –

- \bullet Charged particle production: magnitude of Cronin peak and trends in the $N_{\text{part}}\text{-}$ scaling of multiplicities depend on the choice of the centrality model.
- Charge particle R_{pPb} : large enhancement at high-pt.
- Ridge: significant $v_1 v_5$, similar to those in heavy ion collisions.
- Ridge: long range eta correlations and flow in "central" p+Pb collisions likely driven by the same dynamics as the flow in peripheral Pb+Pb collisions.
- Z-boson: 0-90% cross-section does not fully agree with MC, the production is centrality dependent.
- Z-bosons / charged particles ~ (N_{part}-1)/N_{part} .
- Jet production: R_{CP} and R_{pPb} strongly vary with centrality.
- Jet production: R_{CP} scales with the total jet energy in p-going rapidity region.

Backup slides

Multiplicity, extrapolation to 0 MeV

Multiplicity compared to ALICE

Multiplicity for different models

- Estimates of Ω based on data at 1.8, 9, and 14 TeV -> interpolation to 5 TeV => Ω =0.55, corresponding σ_0 = 78.6 mb
- New results from diffractive analysis from LHC => Ω =1.01, σ_0 = 72.5 mb
- For each choice of Ω and σ_0 , λ chosen to produce $\sigma_{_{NN}}$ = 70 mb.

PANIC 2014

- For fixed N_{part} , $\Sigma E_T^{Pb} \sim N_{part}$ -fold convolution of ΣE_T^{pp}
- ΣE_T^{pp} ~ gamma function:

gamma(x; k,
$$\theta$$
) = $\frac{1}{\Gamma(k)} \frac{1}{\theta} \left(\frac{x}{\theta}\right)^{k-1} e^{-x/\theta}$

=> can fit the measured $\Sigma E_T^{Pb} x$ unsatisfactory result => generalized WN-model:

$$k(N_{\text{part}}) = k_0 + k_1 (N_{\text{part}} - 2),$$

$$\theta(N_{\text{part}}) = \theta_0 + \theta_1 \log (N_{\text{part}} - 1)$$

 \ldots e.g. allows for possible variation in effective acceptance of FCal due to Npart-dependent backward shift

Glauber-Gribov analysis

Matching to the FCal sum Et

Example of $\langle T_{Pb} \rangle$

	Centrality	Glauber	Glauber-Gribov	
/ ⊤ \ [b-1]	60-90%	$42.3^{+2.8}_{-4} \begin{pmatrix} +7\%\\ -10\% \end{pmatrix}$	$\Omega = 0.55$ $36.6^{+2.7}_{-2.2} \begin{pmatrix} +7\% \\ -6\% \end{pmatrix}$	$\Omega = 1.01$ $34.4^{+4}_{-2.1} \begin{pmatrix} +11\% \\ -6\% \end{pmatrix}$
<η ^b , [n]	0-1% 0-90%	$245_{-7}^{+37} \left(\substack{+15\% \\ -2.7\% }{} \right)$ $106.3_{-2.7}^{+4} \left(\substack{+4\% \\ -2.5\% }{} \right)$	$\begin{array}{c} 330^{+15}_{-23} \left(\substack{+5\% \\ -7\% \end{array} \right) \\ 107.3^{+4}_{-2.6} \left(\substack{+4\% \\ -2.4\% \end{array} \right) \end{array}$	$ \begin{array}{c} 377^{+12}_{-60} \left(\substack{+3.2\% \\ -16\% \end{array} \right) \\ 108.5^{+4}_{-2.4} \left(\substack{+4\% \\ -2.2\% \end{array} \right) \end{array} $
ſ				
	Centrality	Glauber	Glauber-Gribov	
/Τ \			$\Omega = 0.55$	$\Omega = 1.01$
\ ■ Pb /cent	40-60% / 60-90%	$2.16^{+0.09}_{-0.06} \begin{pmatrix} +4\%\\ -3\% \end{pmatrix}$	$2.19^{+0.04}_{-0.06} \begin{pmatrix} +2.6\% \\ -2.7\% \end{pmatrix}$	$2.21^{+0.05}_{-0.06} \begin{pmatrix} +2.4\% \\ -2.8\% \end{pmatrix}$
$\langle T_{Pb} \rangle_{60-90}$		(/ -	(,	
	0-1% / 60-90%	$5.80^{+1.3}_{-0.33} \begin{pmatrix} +23\%\\ -6\% \end{pmatrix}$	$9.0^{+0.5}_{-1.1} \begin{pmatrix} +6\%\\ -12\% \end{pmatrix}$	$11.0^{+0.6}_{-2.6} \begin{pmatrix} +5\%\\ -23\% \end{pmatrix}$

Uncertainties:

- central collisions: model + pp cross-section
- peripheral collisions: model + pp cross-section + event selection

PANIC 2014

Corrections for charged particle spectra

$$\frac{1}{2\pi p_{\rm T}} \frac{dN_{\rm ch}}{dp_{\rm T} d\eta} = \frac{1}{2\pi p_{\rm T} N_{\rm evt} \Delta \eta} \frac{N_{ch}(p_{\rm T}, \eta)}{\Delta p_{\rm T}} \underbrace{\frac{\mathcal{P}(p_{\rm T}, \eta)}{\epsilon_{trk}(p_{\rm T}, \eta)}}_{\epsilon_{trk}(p_{\rm T}, \eta)}$$
$$\frac{1}{2\pi p_{\rm T}} \frac{dN_{\rm ch}}{dp_{\rm T} dy^{\star}} = \frac{1}{2\pi p_{\rm T} N_{\rm evt} \Delta y_{\pi}^{\star}} \frac{N_{ch}(p_{\rm T}, y_{\pi}^{\star})}{\Delta p_{\rm T}} \underbrace{\frac{\mathcal{P}(p_{\rm T}, y_{\pi}^{\star})\mathcal{A}(p_{\rm T}, y_{\pi}^{\star})}{\epsilon_{trk}(p_{\rm T}, y_{\pi}^{\star})}}_{\epsilon_{trk}(p_{\rm T}, y_{\pi}^{\star})}$$

 $\epsilon_{\text{trk}}(p_{\text{T}}, y_{\pi}^{\star})$... tracking efficiency

 $\mathcal{P}(p_{\mathrm{T}}, y_{\pi}^{\star})$... purity (to remove fakes and residual secondary tracks)

 $\mathcal{A}(p_{\mathrm{T}}, y_{\pi}^{\star})$... to correct N(y^{*}_{π}) to N(y^{*}) since $\eta \rightarrow y^{*}_{\pi}$ (no particle ID)

Tracking efficiency

"Mass correction"

Correction done using HIJING. Difference between realistic particle composition and pp enters estimates of systematic uncertainties based on measurements of particle composition in p+Pb by CMS and ALICE.

Uncertainties for the multiplicity measurement

	Uncertainty 60-90%		Uncertainty 0-1%		
Source	barrel	endcap	barrel	endcup	
MC detector description	1.7%		1.7%		
Extra material	1%	2%	1%	2%	
Tracklet selection	0.5%	1.5%	0.5%	1.5%	
<i>p</i> _T re-weighting	0.5%	0.5%	0.5%	3.0%	
Extrapolation to $p_{T}=0$	1%	2.5%	1%	2%	
Particle composition		1%		1%	
Analysis method	1.5%	2.0%	1.5%	2.5%	
Event selection	5.0%	6.0%	0.5%	0.5%	

Uncertainties for the charged particle RpPb at high-pt

- Diffractive and electromagentic excitations of proton rejected:
 - rapidity gap analysis (similar to EPJ C72 (2012) 1926)
 - rapidity interval starting from $\eta_{Pb-edge}$ = 4.9 divided into clusters in $\Delta \eta$ = 0.2
 - occupied cluster = cluster with $p_T > 200 \text{ MeV}$
 - events with $\Delta \eta_{gap} = |\eta_{Pb-edge} \eta_{cluster}| > 2$ rejected

Two methods for tracklet reconstruction

$$Y^{\text{sub}}(\Delta\phi) = \frac{\int Y^{\text{sub}}(\Delta\phi)d\Delta\phi}{\pi} \left(1 + \sum_{n} 2v_{n,n}\cos(n\Delta\phi)\right)$$
$$v_{n,n} = \frac{\sum_{m=1}^{N}\cos(n\Delta\phi_m)Y^{\text{sub}}(\Delta\phi_m)}{\sum_{m=1}^{N}Y^{\text{sub}}(\Delta\phi_m)}$$
$$v_{n,n}(p_{\text{T}}^{\text{a}}, p_{\text{T}}^{\text{b}}) = v_n(p_{\text{T}}^{\text{a}})v_n(p_{\text{T}}^{\text{b}})$$
$$v_n(p_{\text{T}}) = v_{n,n}(p_{\text{T}}, p_{\text{T}}^{\text{ref}})/\sqrt{v_{n,n}(p_{\text{T}}^{\text{ref}}, p_{\text{T}}^{\text{ref}})}$$

PANIC 2014