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Measuring the neutron lifetime using 
a magneto-gravitational trap for 

ultracold neutrons
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Outline

• Why study weak interactions via the neutron 
beta decay lifetime?
– Because of the scientific reach
– Because of the impact across nuclear and particle 

physics
• How to measure the neutron lifetime
• The UCN experiment

– The design of the experiment
– Recent results
– Planned improvements
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Neutron Decay Parameters

• Semi-leptonic decay
– Lifetime 880 s
– Endpoint energy 782 keV

• Just two free parameters in SM
– CKM mixing matrix element
– Ratio of weak coupling constants
– Uncertainty comes from radiative 

corrections
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Neutron beta decay can inform many 
areas of physics

• Many reactions share the same Feynman diagram as 
neutron beta decay

Dubbers 2011
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Neutron Lifetime affects BBN
2 7Light elements from H up to Li created in "first three minutes"

Weak reactions between particles:
        ,

        ,       (all have same Feynman diagram)
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, at "freeze-out" temperature :

neutron to proton ratio frozen to: 
        / exp( Δ / ) 1/ 6.

After another 150 s, practically all neutron wind up in He,
i.e., He mass fraction 2 neu
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 mass fraction 25%.

σν ~ 1/τn

τn

Δm = mn − mp = 1.3 MeV

Primordial nucleosynthesis:
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t = 1 s
t = 150 s

And ratio of He/n depends directly on n lifetime: 1% lifetime 
uncertainty shifts calculated He fraction of Y=0.2480+/- .0003 
by 0.0015, or 5 sigma!

Dubbers 2013
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Lifetime uncertainty has grown recently 

PDG 2001-2010          (885.7 0.8) s ( 1)
Serebrov  . 2005    (878.5 0.8) s
Pichlmaier  . 2010 (880.7 1.8) s
PDG 2012                    (880.1 1.1) s  ( 1.8)

n

n

n

n

S
et al
et al

S






  
 
 
  

And central value has shifted by almost 1%!

Serebrov et al.,
PL B 605, 72 (2005)
Pichlmaier et al.,
PL B 693, 221 (2010)

Wietfeldt and Greene, 
Rev. Mod. Phys. 83, 1173 (2011)

Beam Method: Count the dying

Danger: absolute monitor efficiency needed!

Bottle method: count the survivors

PDG 2010

PDG 2012
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Interlude — What are ultracold 
neutrons? 

• Very slow neutrons (v < 8m/s)
• Totally reflected by some materials

• Hence, they can be totally confined within a  bottle for 
periods in excess of 100 seconds.

• Typically: velocity < 8m/s
kinetic energy < 3x10-7 eV
wavelength > 500Å
or temperature < 4 mK

• cf:     Gravity: 10-7 eV/ meter.
Magnetic field (B): 10-7 eV/ 1.7 T.

3mg
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Material bottle experiments involved 
100 s extrapolations due to wall losses

Mampe bottle experiment
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Solution: eliminate wall losses using 
magnetic bottle

• A new crop of experiments using magnetic traps is now 
under development

• Stern-Gerlach effect repels polarized neutrons from walls
ILL Ezhov Bottle filled with vacuum NIST UCN trap filled with superfluid 4He

Both have acquired commissioning data; 
HOPE at Munich also in design stage
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An outstanding problem: phase space 
evolution

• Neutron losses on scale of neutron lifetime 
(quasibound orbits)

• Detector efficiency changes with time
• Must fill phase space evenly, quickly: chaos!

Symmetric Trap has stable orbits Asymmetric Trap has chaotic orbits

C.-Y. Liu, 2012
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UCN experiment is designed to 
overcome phase space issues
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The UCN experiment trap is formed by an array 
of ~5000 permanent magnets forming a “bathtub”

12
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UCN Testbed: Magneto-gravitational storage vessel

UCNs

Halbach array of permanent magnets
No material interactions during storage period
In situ (V-foil activation) or ex situ (fill and dump) neutron detection possible

In situ detector

Halbach array
Cleaner

Ex situ monitor (10B)

Polarizer Spin flipper
Al shutter
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The UCN experiment is installed in the UCN 
facility at Los Alamos’s LANSCE accelerator

14
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“Fill and dump cycle”: Fill and monitor (~200 s)

15
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“Fill and dump” cycle: clean (~30 s)

16
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“Fill and dump” cycle: store (100-2000 s)

17
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“Fill and dump” cycle: count (~100 s)

18
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“Fill and dump” measurement cycle: 
UCNs detected in ex situ monitor
1 2 3 4 50

0: Start UCN flow: beam 
on, shutter open, trap door 
open; cleaner inserted

1: Shutter closes

2: Filling and cleaning; 
superbarrier UCNs to 
monitor

3: Trap door closes, shutter 
opens; beam off; UCNs in 
guide to monitor; cleaning

4: Cleaner retracted; 
storage begins

5: Storage

6: Trap door opens; UCNs 
in trap to monitor

6
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Initial Storage Measurement with UCN Trap

Note: statistical uncertainties only Cude, Chris. "Overview and status update on 
the UCNtau experiment." Bulletin of the APS 58
(2013)
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The next step: in situ detection of surviving neutrons

21
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The neutron absorber/detector in the lowered position

22
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The V absorber can rapidly count all the neutrons 
in the trap

• Absorption time is at least an 
order of magnitude less than 
trap draining time

• Can be reduced further by 
installing larger V foil, also 
testing systematic variations

23

• Absorber can be positioned 
at different heights in the trap

• Distribution of neutrons can 
be compared to MC models

• Efficiency of cleaning can be 
tested by positioning foil 
above cleaning height
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Plans for 2014 LANSCE accelerator cycle

• Demonstrate improved neutron transmission into trap
– Redesigned trap door should provide ~105 neutrons per fill, 

yielding ~1% statistics per week

• Demonstrate improved S/B ratio in V absorber detector
– Added shielding, improved detectors

• Investigate additional possible systematics, e.g.:
– Vibrations
– Magnetic field interactions with other experiments
– Proton-beam related backgrounds
– Neutron-beam related backgrounds
– UCN beam flux and spectrum monitoring

24
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Conclusions

• Precise knowledge of the neutron lifetime is important across 
nuclear and particle phsyics

• There is an imperative need for a new independent experiment with 
~1 s precision

• The UCN experiment has unique capabilities to reduce systematics 
that affected previous experiments

• Initial results look promising, but there is much work still to do!

• Thank you to my collaborators and especially Dirk Dubbers, Bastian 
Maerkisch, Chen-Yu Liu, Albert Young
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