

The Mu2e experiment at Fermilab

http://mu2e.fnal.gov/

Giovanni F. Tassielli

FNAL, INFN Lecce

20th Particles & Nuclei International Conference – PANIC 2014

G. Tassielli - PANIC 2014 Hamburg

The Mu2e collaboration

- Boston University
- Brookhaven National Laboratory
- University of California, Berkeley
- University of California, Irvine
- California Institute of Technology
- City University of New York
- Duke University
- Fermilab
- University of Houston
- University of Illinois, Urbana-Champaign
- University of Massachusetts, Amherst
- Lawrence Berkeley National Laboratory
- Lewis University
- Northern Illinois University
- Northwestern University
- Pacific Northwest National Laboratory
- Purdue University
- Rice University
- University of Virginia

08/28/2014

University of Washington, Seattle

- Laboratori Nazionale di Frascati
- INFN Genova
- INFN Lecce and Università del Salento
- INFN Pisa and Università di Pisa
- INFN Trieste/Udine and Universita di Udine

- Institute for Nuclear Research. Moscow
- JINR, Dubna

Muon to electron conversion in the field of a nucleus

- Initial state: muonic atom
- Final state:

08/28/2014

- a single mono-energetic electron.
 - the energy depends on Z of target.
- recoiling nucleus is not observed
 - the process is coherent: the nucleus stays intact.
- neutrino-less
- Conventional Signal Normalization: $R_{\mu e} = \frac{1}{2}$
- Standard Model ($m_v \neq 0$) rate is ~10⁻⁵²
- There is an observable rate in many new physics scenarios.
- Related decays: Charged Lepton Flavor Violation (CLFV):

$$\mu \to e\gamma \quad \mu \to e^+ e^- e^+ \quad K_L^0 \to \mu e \quad B^0 \to \mu e$$

$$\tau \to \mu\gamma \quad \tau \to \mu^+ \mu^- \mu^+ \quad D^+ \to \mu^+ \mu^+ \mu^-$$

 $\mu N \rightarrow eN$

 $\Gamma(\mu^- + N(A,Z) \to e^- + N(A,Z))$

 $\Gamma(\mu^- + N(A,Z) \rightarrow \text{all muon captures})$

 $E_e \sim 105 \; MeV$

History of
$$\mu \rightarrow e$$
, $\mu N \rightarrow eN$ and $\mu \rightarrow 3e$

MU2

Need CLFV measurements (Mu2e and others) to discriminate among interpretations

• If new physics is not seen at the LHC

Mu2e has discovery reach to mass scales that are inaccessible to the the LHC

The concept of Mu2e measurement

- Generate pulse beam of low momentum μ⁻
- Stop muons in thin foils and form muonic atoms
- Wait for it to decay
 - Decay-in-orbit (DIO): 40%
 - Continuous *E_e* spectrum.
 - Muon capture on nucleus: 60%
 - Nuclear breakup: *p*, *n*, γ
 - Neutrino-less µ to e conversion
 - Monoenergetic, *E_e* ~ 105 MeV
 - At endpoint of continuous spectrum.
- Then measure electron spectrum
 - The signal: monoenergetic electrons at 105 MeV

backgrounds

6/20

Proton delivery

- We make muons by directing 8 GeV protons on to a target.
- Batches of protons from the Booster are transported through existing beamlines to the Recycler Ring where they are re-bunched and transported to the Delivery Ring through existing transport lines.
- Beam is slow extracted from Delivery Ring in microbunches of ~ 10⁷ protons every 1695 ns through a new external beamline to the Mu2e production target.
- Run simultaneously with NOvA and Booster Neutrino Program.

Detector solenoid is surrounded by a Cosmic Ray Veto

Exist a not negligible probability that due to the interaction of a cosmic ray in the DS there will be a particle that can mimic a signal event, a 99.99% efficient CRV is needed!

CRV-D

- Four layers of extruded plastic scintillators (~5000 counters)
- Fiber/SiPM readout (neutron damage is an issue 1kHz neutrons/cm²)
- Al and concrete shielding (10¹⁰ neutrons/cm²/s from the stopping target)

- Pulse of low energy μ on thin AI foils
- ~50% are captured to form muonic AI
- ~0.0019 stopped µ⁻ per proton on production target
- DIO and conversion electrons pop out of target foils

One cycle of the muon beamline

- μ are accompanied by e^- , e^+ , π , anti-protons ...
 - these create prompt backgrounds
 - strategy: wait for them to decay.
- extinction = (# protons between bunches)/(protons per bunch)
 - requirement: extinction < 10⁻¹⁰

Tracker: strawtubes operating in vacuum

- Straws: 5 mm OD; 15 μm metalized mylar wall (~ 23000).
- Will employ time division: ~5 mm at straw center.
- 2 layers of 48 straws are arranged to make a panel;
- 2. 6 rotated panels and placed in two different surfaces make a plane;
- 3. 2 rotated planes make a station;
- 4. 20 stations form the tracker.

How do you measure 2.5×10^{-17} ?

some hits tracker, tracks not reconstructable.

reconstructable tracks (Only about 10⁻¹⁰ of all the DIO are seen, in order to keep the background rates at a reasonable level.)

beam's-eye view of the tracker

13/20

Tracker performance

Full Geant4 modeling and reconstruction

Signal sensitivity for a 3 Year Run

Full Geant4 modeling and reconstruction without any truth input (tracker only)

15/20

- Two disk geometry (inner radius 351 mm, outer radius 660 mm);
- Hexagonal BaF₂/CsI crystals (33 mm x 180 mm, ~1900); two (10 x 10 mm²) APD or SiPM readout;
- Provides precise timing (< 1 ns), PID (μ/e), background rejection, alternate track seed and possible calibration trigger.

Scintillating crystal calorimeter (PID performance

Likelihood PID based on these two variables (combining tracker and calorimeter information):

A rejection

factor > 100

08/28/2014

G. Tassielli - PANIC 2014 Hamburg

17/20

MU26

Calorimeter contribution on to track seeding

Full Geant4 modeling and reconstruction

CalPatRec Vs TrkPatRec, SetC Tracks

Reconstructed CE momentum

Summary and conclusions

- mu2e will either discover µ to e conversion or set a greatly improved limit
 - \square R_{µe} < 6 × 10⁻¹⁷ @ 90% CL.
 - 10⁴ improvement over previous best limit
 - □ Mass scales to $O(10^4 \text{ TeV})$ are within reach

Schedule:

- □ Final review ~September 2014; expect approval ~October 2014
- Construction start fall 2014
- Installation and commissioning in 2019-2020
- Solenoid system is the critical path
- mu2e is a long term program:
 - If there is a signal we will study the A,Z dependence of R_{µe} to elucidate the underlying BSM physics
 - If there is no signal we will be able to improve the experimental sensitivity by a factor of 10 or more

Thank you

G. Tassielli - PANIC 2014 Hamburg

Not Covered in This Talk

- Pipelined, deadtime-less trigger system
- Stopping target monitor
 - Ge detector, behind muon beam dump
- Details of proton delivery
- AC dipole in transfer line; increase extinction
- In-line extinction measurement devices
- Extinction monitor near proton beam dump
- Muon beam dump
- Singles rates and radiation damage due to neutrons from production target, collimators and stopping target.

Backgrounds

- Stopped muon-induced
 - muon decay in orbit (DIO)
- Out of time protons or long transit-time secondaries
 - radiative pion capture; muon decay in flight
 - pion decay in flight; beam electrons
 - anti-protons

Secondaries from cosmic rays

- Mitigation:
 - excellent momentum resolution
 - excellent extinction plus delayed measurement window
 - thin window at center of TS to absorb anti-protons
 - extreme care in shielding and veto

Backgrounds for a 3 Year Run

Source	Events	Comment
	0.20 ± 0.06	
Anti-proton capture	0.10 ± 0.06	
Radiative π- capture*	0.04 ± 0.02	from protons during detection time
Beam electrons*	0.001 ± 0.001	
µ decay in flight*	0.010 ± 0.005	with e- scatter in target
Cosmic ray induced	0.050 ± 0.013	assumes 10-4 veto inefficiency
Adduvalues prelimit	naryq.4some	are statistical error only.

* scales with extinction: values in table assume extinction = 10^{-10}

Tracker performance

Full Geant4 modeling and reconstruction

Cummulative ax∈

Relative a×∈

26/20

INFN

MU2e

Calorimeter crystal history

- Initial choice PbWO4: small X0, low light yield, low temperature operation, temperature and rate dependence of light output
- CDR choice LYSO: small X0, high light yield, expensive (→very expensive)
- TDR choice: BaF2: larger X0, lower light yield (in the UV), very fast component at 220 nm, readout R&D required, cheaper,

Crystal	BaF ₂	LYSO	CsI	PbWO ₄
Density (g/cm ³)	4.89	7.28	4.51	8.28
Radiation length (cm) X_0	2.03	1.14	1.86	0.9
Molière radius (cm) Rm	3.10	2.07	3.57	2.0
Interaction length (cm)	30.7	20.9	39.3	20.7
dE/dx (MeV/cm)	6.5	10.0	5.56	13.0
Refractive Index at λ_{max}	1.50	1.82	1.95	2.20
Peak luminescence (nm)	220, 300	402	310	420
Decay time τ (ns)	0.9,650	40	26	30, 10
Light yield (compared to NaI(Tl)) (%)	4.1, 36	85	3.6	0.3, 0.1
Light yield variation with	0.1, -1.9	-0.2	-1.4	-2.5
temperature (% / °C)				
Hygroscopicity	None	None	Slight	None

Calorimeter based trigger filter

- The trigger algorithm applies a threshold on the reconstructed energy
- Signal efficiency and DIO rate were studied convoluting results from G4 with Gaussian functions (sigma's are showed on figures)

Calorimeter thr = 70 MeV, effi ~ 90 %, DIO rate ~ 2 kHz @ 5 % resol.

Crystal and photosensor alternatives

	Crystal	BaF2	LYSO	CsI	PbWO ₄
BaF2 presents several advantages:	Density (g/cm ³)	4.89	7.28	4.51	8.28
	Radiation length (cm) X ₀	2.03	1.14	1.86	0.9
✓ Small decay time	Molière radius (cm) Rm	3.10	2.07	3.57	2.0
	Interaction length (cm)	30.7	20.9	39.3	20.7
√ Non-hygroscopic	dE/dx (MeV/cm)	6.5	10.0	5.56	13.0
	Refractive Index at λ_{max}	1.50	1.82	1.95	2.20
	Peak luminescence (nm)	220, 300	402	310	420
√ Rad hard	Decay time τ (ns)	0.9, 650	40	26	30, 10
	Light yield (compared to NaI(TI)) (%)	4.1, 36	85	3.6	0.3, 0.1
	Light yield variation with	0.1, -1.9	-0.2	-1.4	-2.5
	temperature (% / °C)	100.000			
	Hygroscopicity	None	None	Slight	None

✓ 60% QE @ 200 nm (wa
 ✓ ~0.1% QE @ 300 nm
 ✓ capacitance ~ 60 pF

✓ operation gain ~ 500

G. Tassielli - PANIC 2014 Hamburg

MU2

- wall thickness of 15 μm:
 - two layers of ~6 μm (25 gauge) Mylar®, spiral wound, with a ~3 μm layer of adhesive between layers. The inner surface has 500 Å aluminum overlaid with 200 Å gold as the cathode layer. The outer surface has 500 Å of aluminum to act as additional electrostatic shielding and improve the leak rate.

The straws will be tensioned to 500 g;

- sense wire is 25 μ m gold plated tungsten, centered in the straw.
 - The wire will be tensioned to 80 g.
- The drift gas is tentatively taken as 80:20 Argon:CO₂ with an operating voltage of ~1500 V, with maximum drift time of ~50 ns and gain of ~3*10⁴.

Two example of background from cosmic ray

G. Tassielli - PANIC 2014 Hamburg

08/28/2014

Mu2e

The previous best experiment

- SINDRUM II
- $R_{\mu e} < 6.1 \times 10^{-13}$ @90% CL
- 2 events in signal region
- Au target: different E_{a} ender E_{ρ} endpoint than AI.

08/28/2014

G. Tassielli - PANIC 2014 Hamburg

32/20

SINDRUM II Ti Result

SINDRUM-II

- Dominant background: beam π
- Radiative pion Capture (RPC), suppressed with prompt veto
- Cosmic ray backgrounds were also important

 $R_{\mu e}$ (Ti) < 6.1X10⁻¹³ PANIC 96 (C96-05-22)

 $R_{\mu e}(Ti) < 4.3X10^{-12}$ Phys.Lett. B317 (1993)

 $R_{\mu e}(Au) < 7X10^{-13}$ Eur. Phys. J. , C47 (2006)

Why is mu2e more sensitive than SINDRUM IR

- **FNAL** can deliver $\sim 10^3 \times \text{proton intensity}$.
- Higher μ collection efficiency.
- SINDRUM II was background-limited.
 - Radiative π capture.
 - Bunched beam and excellent extinction reduce this.
 - Thus mu2e can make use of the higher proton rate.

Required Extinction 10⁻¹⁰

- Internal: 10⁻⁷ already demonstrated at AGS.
 - Without using all of the tricks.
- External: in transfer-line between ring and production target.
 AC dipole magnets and collimators.
- Simulations predict aggregate 10-12 is achievable
- Extinction monitoring systems have been designed.

Capture and DIO vs Z

G. Tassielli - PANIC 2014 Hamburg

36/20

Mu2e e

Conversion Rate, Normalized to Al

Proton Beam Macro Structure

G. Tassielli - PANIC 2014 Hamburg

38/20

Proton Beam Micro Structure

MU26

FNAL accelerator complex

Muze

Proton Improvement Plan (PIP)

- Improve beam power to meet NOvA requirements
- Essentially complete.

PIP-II design underway

- Project-X reimagined to match funding constraints
- □ 1+ MW to LBNE at startup (2025)
- Flexible design to allow future realization of the full potential of the FNAL accelerator complex
 - ~2 MW to LBNE
 - 10 × the protons to Mu2e
 - MW-class, high duty factor beams for rare process experiments
- Steve Holmes' talk to P5 at BNL, Dec 16, 2013 <u>https://indico.bnl.gov/getFile.py/access?contribId=11&sessionId=5&r</u> <u>esId=0&materiaIId=slides&confId=680</u>
- Conceptual Plan:<u>http://projectx-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1232</u>

Mu2e in the PIP-II Era

- If we have a signal:
 - Study Z dependence: distinguish among theories
 - Enabled by the programmable time structure of the PIP-II beam: match pulse spacing to lifetime of the muonic atom!

- If we have no signal:
 - Up to to 100 × Mu2e physics reach, $R\mu e < 10^{-18}$.
 - First factor of ~10 can use the same detector.

