Soft probes of the quark-gluon plasma in ATLAS

Krzysztof Woźniak, IFJ PAN, Krakow for the ATLAS Collaboration

Outline

Study of Quark-Gluon Plasma initial conditions and evolution

 Integrated elliptic flow
Flow harmonics from multi-particle cumulants
Event plane correlations
Correlations between flow harmonics
Long range pseudorapidity correlations More details were given in the earlier talk by Martin Spousta

The ATLAS detector

Krzysztof Wozniak, Soft probes of the quark-gluon plasma in ATLAS, PANIC 2014

3

Centrality of PbPb collisions

Distribution of the signals registered in the Forward Calorimeter (FCal) is divided into bins with appropriate percentage of events .

Fraction of the sampled non-Coulomb inelastic cross section after all trigger selection cuts is estimated to be 100% \pm 2%

Azimuthal correlations decomposition - definitions

Event plane method

$$\frac{dN}{d\phi} \sim 1 + 2\sum_{n=1}^{\infty} v_n(p_T, \eta) \cos(n(\phi - \Phi_n))$$

$$v_n = \langle \cos(n(\phi - \Phi_n)) \rangle$$

Two-particle correlations method

$$\frac{dN}{d(\phi_a - \phi_b)} \sim 1 + 2\sum_{n=1}^{\infty} v_{n,n}(p_T^a, p_T^b) \cos(n(\phi_a - \phi_b))$$

$$v_{n,n} = \langle \cos(n(\phi_a - \phi_b)) \rangle$$

for flow: $v_{n,n}(p_T^a, p_T^b) = v_n(p_T^a)v_n(p_T^b)$

Cumulants from 2k-particle correlations

$$\langle corr_n \{ 2k \} \rangle = \langle exp(in(\phi_1 + ... + \phi_k - \phi_{k+1} + ... + \phi_{2k})) \rangle$$

Krzysztof Wozniak, Soft probes of the quark-gluon plasma in ATLAS, PANIC 2014

5

Integrated elliptic flow:

- from reconstructed tracks with $p_T > p_T^{min}$, extrapolated to $p_T = 0$
- measured down-to very low p_T (p_T>0.07 GeV) [arXiv:1405.3936v2]

Using pixel tracklets (vertex+2 hits) and pixel tracks ATLAS is reconstructing low-p_T charged primary particles with sufficient efficiency to measure integrated elliptic flow without model dependent corrections ATLAS, arXiv:1405.3936v2

Integrated elliptic flow:

- from reconstructed tracks with $p_T > p_T^{min}$, extrapolated to $p_T = 0$
- measured down-to very low p_{T} (p_{T} >0.07 GeV) [arXiv:1405.3936v2]

Using pixel tracklets (vertex+2 hits) and pixel tracks ATLAS is measuring low- p_T charged primary particles with sufficient efficiency.

Integrated flow is ~20% smaller that the flow calculated from tracks with $p_{\tau}{>}0.5~GeV$

ATLAS, arXiv:1405.3936v2

Elliptic flow for different p_{τ} cuts:

ATLAS, arXiv:1405.3936v2

8

Integrated elliptic flow - after transformation to the rest frame of one of colliding nuclei:

LHC results consistent with the extended longitudinal scaling observed at RHIC

ATLAS, arXiv:1405.3936v2

9

Flow harmonics with multi-particle cumulants in Pb+Pb collisions

 v_2 {4}, v_2 {6} and v_2 {8} values of elliptic flow obtained from 4, 6 and 8-particle correlations, in which effects from two-particle correlations are canceled, are significantly smaller than v_2 from two-particle correlations or from event plane method 10

Flow harmonics with multi-particle cumulants in Pb+Pb collisions

Even stronger relation for higher order harmonics: $v_n{2} > v_n{EP} >> v_n{4}$ for n > 2

ATLAS, arXiv:1408.4342

Flow harmonics with multi-particle cumulants in Pb+Pb collisions

Weak pseudorapidity dependence of v_3 and v_4

ATLAS, arXiv:1408.4342

Flow harmonics with multi-particle cumulants in Pb+Pb collisions

Centrality dependence of v_2 , v_3 and v_4

Harmonics measured using different methods have similar shape of centrality dependence, but with different magnitude:

 $v_{2}^{2} > v_{2}^{EP} > v_{2}^{EbyE} > v_{2}^{4}$

Note:

 v_n {EbyE} is calculated from the distribution of v_n measured event-by-event

 $v_n(EbyE) = \sum v_n p(v_n)$

v₂{2} - contains short range two particle correlations
v₂{EP} - increased by flow fluctuations
v₂{EbyE} - without these effects
v₂{4} - related to the "generic" initial flow effect

ATLAS, arXiv:1408.4342

Correlation between event planes Φ_n and Φ_m

$$\frac{dN_{events}}{d\left(k\left(\Phi_{n}-\Phi_{m}\right)\right)} \propto 1 + 2\sum_{j=1}^{\infty} V_{n,m}^{j} \cos jk\left(\Phi_{n}-\Phi_{m}\right)$$

$$V_{n,m}^{j} = \langle \cos jk (\Phi_{n} - \Phi_{m}) \rangle$$

Event plane angles Φ reconstructed in separated pseudorapidity intervals:

2 planes: (-4.8, -0.5) and (0.5, 4.8) **3 planes:** (-2.7, -0.5), (0.5, 2.7) and (3.3, 4.8)

In the correlators combinations of angles $\Phi_{_2}$ to $\Phi_{_6}$

are used. Two methods of calculations are deployed:

EP - event plane method

SP - scalar product method - in which flow vector weights are used

For comparison unweighted or weighted correlators obtained from Glauber model are calculated.

Correlators:

$$\begin{array}{l} \left\langle \cos 4(\Phi_2 - \Phi_4) \right\rangle \\ \left\langle \cos 8(\Phi_2 - \Phi_4) \right\rangle \\ \left\langle \cos 12(\Phi_2 - \Phi_4) \right\rangle \\ \left\langle \cos 6(\Phi_2 - \Phi_3) \right\rangle \\ \left\langle \cos 6(\Phi_2 - \Phi_6) \right\rangle \\ \left\langle \cos 6(\Phi_3 - \Phi_6) \right\rangle \\ \left\langle \cos 12(\Phi_3 - \Phi_4) \right\rangle \\ \left\langle \cos 10(\Phi_2 - \Phi_5) \right\rangle \end{array}$$

$$\begin{array}{l} \langle \cos \left(2 \, \Phi_2 + 3 \, \Phi_3 - 5 \, \Phi_5 \right) \rangle \\ \langle \cos 4 \left(-8 \, \Phi_2 + 3 \, \Phi_3 + 5 \, \Phi_5 \right) \rangle \\ \langle \cos 4 \left(2 \, \Phi_2 + 4 \, \Phi_4 - 6 \, \Phi_6 \right) \rangle \\ \langle \cos 4 \left(-10 \, \Phi_2 + 4 \, \Phi_4 + 6 \, \Phi_6 \right) \rangle \\ \langle \cos 4 \left(2 \, \Phi_2 - 6 \, \Phi_3 + 4 \, \Phi_4 \right) \rangle \\ \langle \cos 4 \left(-10 \, \Phi_2 + 6 \, \Phi_3 + 4 \, \Phi_4 \right) \rangle \end{array}$$

Correlation between two event planes Φ_n and Φ_m

Glauber model does not describe these correlations

ATLAS, arXiv:1403.0489v1 [hep-ex]

ATLAS EXPERIMENT

Correlation between three event planes Φ_n , Φ_m and Φ_h

 $\langle \cos(c_n n \Phi_n + c_m m \Phi_m + c_h h \Phi_h) \rangle$

ATLAS, arXiv:1403.0489v1 [hep-ex]

ATLAS, arXiv:1403.0489v1 [hep-ex]

Krzysztof Wozniak, Soft probes of the guark-gluon plasma in ATLAS, PANIC 2014

 $\langle \cos(\Sigma \Phi) \rangle_{u}$ data

 $(\cos(\Sigma\Phi))$ data

 $\langle \cos(\Sigma \Phi) \rangle_{w} \text{AMPT}$

 $\langle \cos(\Sigma \Phi) \rangle$ AMPT

300

400

Studies of correlations between v_2 and v_n (n=2-5), obtained from two-particle correlations:

- as a function of centrality
- as a function of p_T
- as a function of event shape, characterized by q₂ flow vector magnitude, measured in 3.3 < |η| < 4.8 interval

ATLAS-CONF-2014-022

Correlations between v₂ values for different p_{τ} ranges

ATLAS-CONF-2014-022

Correlations between v_2 values for different p_{τ} ranges

When events in each centrality bin are divided into subsamples according to q_2 values, linear correlations are observed. For fixed centrality the viscousdamping changes very little with event ellipticity.

Viscous corrections are controlled by the overall system size.

ATLAS-CONF-2014-022

Centrality dependence of correlations between v_2 and v_n (n=3-5) measured in the same range of p_T

ATLAS-CONF-2014-022

Centrality and q_2 dependence of correlations between v_2 and v_3 or v_4

 $^{\prime}_{4}$ Centrality 0-65%, no q_2 selection 0.03 **ATLAS** Preliminary s_{nn}=2.76 TeV $L_{int} = 7 \ \mu b^{-1}$ 0.02 Pb+Pb Centrality intervals with q selection: 0.01 - 0-5% **-→** 30-35% **---** 40-45% $|\Delta \eta| > 2$ **___** 20-25% **—** 50-55% → 60-65% 0.5 < p_T < 2 GeV 01 0.15 V_2

Negative correlation between v_2 and v_3 for changing q_2 within fixed centrality Positive, non linear correlation between v_2 and v_4 for changing q_2 within fixed centrality

ATLAS-CONF-2014-022

Parameters of the fit can be used to extract linear and non-linear component of v_{a}

ATLAS-CONF-2014-022

Linear and non-linear terms in v_4

fit:
$$v_4 = \sqrt{c_0^2 + (c_1 v_2^2)^2}$$

Parameters of the fit can be used to extract linear and non-linear components of v_4

$$v_{4}^{L} = c_{0}$$
$$v_{4}^{NL} = \sqrt{v_{4}^{2} - c_{0}^{2}}$$

The same components can be calculated using the correlations between event planes

ATLAS-CONF-2014-022

Centrality and q₂ dependence of correlations between v₂ and v₅

Long-range pseudorapidity correlations in p+Pb collisions

To study long-range effects the yield from peripheral events needs to be subtracted:

27

Long-range pseudorapidity correlations in p+Pb collisions

Comparison of $v_n(p_T)$ in p+Pb and Pb+Pb collisions

ATLAS-CONF-2014-021

Summary

Integrated elliptic flow

- > measurement of elliptic flow down-to very low $p_T (p_T > 0.07 \text{ GeV})$
- > no need for model dependent extrapolations to $p_T=0$

Flow harmonics from multi-particle cumulants

- higher order cumulants insensitive to two-particle correlations
- > harmonics obtained from cumulants better represent real flow
- > confirmed significant non-flow contribution in v_n from two-particle correlations
- > $v_2{2} > v_2{EP} > v_2{4} \approx v_2{6} \approx v_2{8}$
- > strong centrality dependence of v_2 and a weak dependence of v_n for n>2

Event plane correlations

- > correlations between 2 or 3 event planes studied
- Glauber model inconsistent with the data, AMPT model including final state collective dynamics describes these correlations well

Correlations between flow harmonics

- > presence of viscous-damping effects expected from hydrodynamic calculations
- > negative correlation between v_2 and v_3 for changing ellipticity within fixed centrality
- > positive, non linear correlation between v_2 and v4 for changing q_2 within fixed centrality

Long range pseudorapidity correlations

- $\,\,$ significant correlations extending to $|\Delta\eta|\,\approx\,$ 5 present also in the away-side
- > extracted $v_n(p_T)$ (n=2-4) in p+Pb collisions similar to those in Pb+Pb collisions after appropriate rescaling

Backup

The ATLAS detector

The ATLAS detector

Integrated elliptic flow - η dependence:

ATLAS, arXiv:1405.3936v2

