Helicity Dependent Cross Sections in η Photoproduction off Quasi-Free Protons and Neutrons

Lilian Witthauer

Hamburg, August 28th 2014

PANIC 2014

U N I B A S E L

Conclusion O

Outline

1 Introduction

Motivation Double Polarization Observable **E** Experiment

Helicity Dependent Cross Sections in η Photoproduction off Quasi-Free Protons and Neutrons

Lilian Witthauer

0	1			
U	ι			
0				

Introduction

Analysis 0000000000 Conclusion

Motivation

 \Rightarrow use polarization observables to identify amplitudes and quantum numbers

Conclusion

Nature of this Structure is unknown

1. etaMAID:

Large contribution of the $D_{15}(1675)$ > high value for the branching ratio of $\Gamma_{\eta N}/\Gamma_{tot} = 17\%$ (PDG: $\Gamma_{\eta N}/\Gamma \simeq 0 - 1\%$) (L.Tiator, NSTAR2005)

2. Chiral Soliton model:

non-strange member of the baryon antidecuplet: $P_{11}(1680)$. bigger coupling to the neutron than to the proton (D.Diakonov et al., arXiv:hep-ph/9703373v2)

Conclusion

Double Polarization Observable E

- circularly polarized beam P_{γ}
- Iongitudinally polarized target P_T

Observable	Spin Orientation
σ _{1/2}	↑↓, ↓↑
$\sigma_{3/2}$	$\uparrow\uparrow$, $\downarrow\downarrow$

measure the asymmetry:

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{\sigma_{1/2} - \sigma_{3/2}}{2\sigma_{tot}}$$

Conclusion

Double Polarization Observable E

- ▶ \nexists polarized deuterium \Rightarrow dButanol: C₄D₉OD
- 2 ways to measure E:

w/o carbon subtraction:

ion: $\sigma_{1/2} - \sigma_{3/2}$

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{2\sigma_{tot}}$$

with carbon subtraction:

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

Conclusion

Double Polarization Observable E

- ▶ \nexists polarized deuterium \Rightarrow dButanol: C₄D₉OD
- 2 ways to measure E:

w/o carbon subtraction:

with carbon subtraction:

$$E = \frac{\sigma_{1/2} - \sigma_{3/2}}{2\sigma_{tot}} \qquad \qquad E = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

	dButanol	Carbon	η/h	
July 13	9 days	-	$\sim 25'000$	
Feb 14	5 days	3 days	\sim 30'000	
Jan/Feb 14	25	-	\sim 3'000	≻ lin. pol., trigger,

Conclusion

MAinzer MIcrotron: Electron Accelerator

Helicity Dependent Cross Sections in η Photoproduction off Quasi-Free Protons and Neutrons

Experiment: Setup

- Circularly polarised tagged photon beam
- Crystal Ball: Highly segmented sphere made of Nal
- PID: Cylinder of scintillation counters surrounds target, charged particle detector
- TAPS: Forward wall, BaF₂ & PbWO₄ crystals
- ► **Target**: longitudinally polarised ~ 65%

geometrical acceptance close to 4π

Conclusion

Reaction Identification

➤ neutral and charged particles:

$$\begin{array}{c|cccc}
 & \sigma_{\mathbf{p}} & \sigma_{\mathbf{n}} \\
\hline
\gamma \rho \to \eta \rho & \gamma n \to \eta n \\
\hline
\eta \to 2\gamma & 2n \& 1c & 3n \\
\eta \to 6\gamma & 6n \& 1c & 7n \\
\end{array}$$

> find best combination with χ^2 test:

 $\eta \to 2\gamma \ (\sigma_n): \qquad \qquad \chi^2 = \frac{(m_k(\gamma\gamma) - m_\eta)^2}{(\Delta m_k(\gamma\gamma))^2} \quad k = 1, ..., 3$ $\eta \to 6\gamma: \qquad \qquad \chi^2 = \sum_{k=1}^3 \frac{(m_k(\gamma\gamma) - m_{\pi^0})^2}{(\Delta m_k(\gamma\gamma))^2}$

Conclusion

Background Suppression

Coplanarity:

$$\Delta \phi = \phi_N - \phi_\eta$$

cut on $\pm 2~\sigma$

Conclusion

Background Suppression

Missing Mass:

$$\Delta M = |P_{Beam} + P_N - P_\eta)| - m_N$$

cut on $\pm 1.5~\sigma$

Outlin

Introductio

Analysis

Conclusion

Pulse Shape Analysis (TAPS)

Conclusion

Other identification possibilities

Conclusion

Invariant Mass Distributions

▶ integrate $m_{\gamma\gamma}(E, \cos(\theta)) 2\gamma$: 450-630 MeV 6 γ : 500-600 MeV

0	u	tl	li	n	e
0					

Conclusion O

Cross Sections

normalize with photon flux

• detection efficiency correction (MC): energy and θ dependent

► MC not perfect → nucleon detection efficiency correction from hydrogen data

$$\gamma + p \rightarrow \eta + p$$
 $\gamma + p \rightarrow \pi^0 + \pi^+ + n$

Introduction

Analysis 0000000000 Conclusion 0

Carbon Subtraction

- ► N_{1/2} + N_{3/2}: carbon contribution → carbon subtraction needed!
- *N*_{1/2} *N*_{3/2}: no carbon left!

Conclusion 0

Carbon Subtraction

Helicity Dependent Cross Sections in η Photoproduction off Quasi-Free Protons and Neutrons

Outlin

Analysis

Conclusion

η Asymmetries - Preliminary

Helicity Dependent Cross Sections in η Photoproduction off Quasi-Free Protons and Neutrons

Conclusion

- ▶ preliminary asymmetries for $\gamma p \rightarrow \eta p$ and $\gamma n \rightarrow \eta n$
- η bump only in $\sigma_{1/2}$: S_{11} , P_{11} resonance?
- ► Further investigation has to be done: Discrepancy in S_{11} region of proton \rightarrow nucleon efficiency?

Thanks for your attention

This work is supported by:

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION Deutsche Forschungsgemeinschaft

DEG