

Study of Solder Ball Bump Bonded Hybrid Silicon Pixel Detectors at DESY

S. Arab, <u>S. Choudhury</u>, G. Dolinska, K. Hansen, I. Korol, H. Perrey, D. Pitzl, S. Spannagel (DESY – Hamburg)

E. Garutti, M. Hoffmann, J. Pöhlsen, V. Sola, G. Steinbrück (University of Hamburg)

PANIC 2014 : 20th Particles and Nuclei International Conference 25 – 29 August 2014, Hamburg (Germany)

Outline

- Silicon Pixel Detector Components
- Solder Ball Bump Bonding @ DESY
- Lab Test for Bump Bonding Quality
- Pixel Module @ DESY e⁻ Test Beam

Hybrid Silicon Pixel Detector

solder ball placement

Silicon sensors with $100 \times 150 \ \mu m^2$ pixels, bump bonded to CMOS readout chips for DC connection.

Requires a flip-chip bump bonding technology.

Bump Bonding at DESY uses a solder ball laser jetter and a flip chip bonder

after flip chip bonding

Module Components

Somnath Choudhury (DESY)

Sensor Technology

Sensor concept

The so called "**n-in-n**" approach (**n**⁺ **pixel implant in n substrate**)

High signal at moderate voltagesPixel should respond to small signal (low capacity and noise)

Double sided processing

- All sensor edges on ground
- Inter-pixel isolation (p-spray)
- Punch-through bias dots define the pixel potential in case of missing bump bond connections
- Expensive process

Designed at PSI by T. Rohe et. al. and fabricated by CIS, Erlangen

Readout Chip

Readout Chip PSI46v2

- Process: 0.25 µm, 5 metal layers
- 1.3 M transistors
- number of pixels: 4160 (52x80), organized in double columns
- pixel size: 100 μm x150 μm (r ϕ x z)
- power supplies: +2.5 V (digital) and +1.75 V (analog), 6 on-chip programmable voltage regulators
- power consumption: ~120 mW = 29 μW / pixel
- Programming interface: modified I²C running at 40 MHz.

Bump Bonding @ DESY

Solder Ball Jetting

- Start with high-precision solder balls 40 µm diameter
- Singulate and drop through capillary towards pad
- Melt by laser pulse during fall, solidify on pad
- Step-motor controlled: 5 balls/s implies 4h/module

SnAg Solder Balls

Pad bumped with 40 µm solder ball, after 240°C re-flow

missing balls re-worked automatically

Side view of chain structure with the 40 μm solder balls

Somnath Choudhury (DESY)

Flip Chip Bonding

1st ROC placed on sensor (with solder balls)

All 16 ROCs: flip-chip bonded

readout chip bonded onto the Si sensor with 160 N force @ 240°C

In-situ solder reflow performed in formic acid atmosphere

Bump Bond Testing

Destructive testing: cut and polish, microscope inspection

Non-destructive electrical test on a probe station

Probe Station

Test Board

Somnath Choudhury (DESY)

Probe Card

Test Procedure

Bump Bonding Test Strategy

Test pulse via sensor pad and air capacitance

- read out analog pulse height (through sensor)
- Missing bump bonds at zero

Test Results

All pixels respond to test pulses – zero pulse height indicate missing bump Clear separation between missing bump bonds and the good connections

2 Missing Bumps from pulse height test at the top left corner

Sr⁹⁰ Test Results

2 Missing bumps at the top left corner confirmed with Sr^{90} (radioactive β -ray source) hit map

Thermal Cycling

- Temperature variations from -17°C to +30°C
- Several cycles performed back and forth
- Study performed for a week (1-7 h / cycle)

Bump bonding tests show consistency on all days at high and low temperatures Bumps are in place, 2 bad bonds as expected

Somnath Choudhury (DESY)

Threshold and Noise

Charge threshold @ **3100** e, important for charge sharing

Influences position resolution and efficiency after irradiation

Noise from width of threshold curve ~ **160 e**

Similar to PSI Indium bump bonded pixel modules with the same ROC.

Full Module Bump Bond Test

module with 16 readout chips: 66'560 pixels

- bump bonding test result:
 - white = dead pixel (4)
 - green = good bump (99.97%)
 - red = missing bump (19)

DESY Test Beam View

DESY Testbeam and AIDA Telescope with Mimosa Sensors

Single chip module as device under test (DUT)

DESY Test Beam Setup

- Upstream telescope arm 0-1-2:
 - as close as possible to DUT, but allow for tilting
- DUT = single chip module, tilted by up to 30 degrees
- Downstream telescope arm 3-4-5:
 - equally spaced between DUT and REF
- REF = single chip module for timing
- Trigger: 4-fold scintillator coincidence, 1×1 cm² area

Test Beam Profile

beam profile @ DESY test beam

2 Missing bumps at top left corner (reconfirmed with beam profile in DESY test beam)

Tracking Efficiency

DUT hit linked to isolated telescope track with link to REF hit

DUT efficiency

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

isolated telescope track with link to REF hit

Fiducial Efficiency 99.965%

Somnath Choudhury (DESY)

Position Resolution

Position resolution calculated by comparing the track position interpolated by the telescope planes and the pixel hit position using **charge sharing** between rows

atan(pixel width in row direction/sensor thickness) = $atan(100 \mu m/285 \mu m) \approx 19.3 \text{ degrees}$

Tilt 19.3 degrees, **Resolution ~ 7 \mum** Corrected for 4.3 μ m telescope resolution

Summary

- Set up in-house flip-chip bump bonding process for hybrid silicon pixel detectors
- Solder ball placement using commercial laser jetter covering the entire sensor
- Electrical testing of the bump connections by sensing a capacitively induced charge
 high bump bond yield achieved (confirmed by source test)
- > Noise in DESY SnAg bump bonded detector similar to PSI In bump bonded detector
- Detector at DESY electron test beam: high tracking efficiency of 99.96% and an excellent position resolution 7 µm achieved

