Searching a Dark Photon with HADES

Romain Holzmann, GSI Darmstadt for the HADES collaboration

NIC2014 Hamburg, Germany

Dark Matter in the Universe

Many astronomical & astrophysical observations support the existence of a large amount of non-baryonic matter, so-called Dark Matter, in the universe:

Cosmic microwave background (CMB) anisotropies:

- Pattern and dynamics of large-scale structures in the universe (galaxies, clusters of galaxies) In particular: rotational-velocity profiles of galaxies
- Gravitational lensing of far-away objects
- Also, hints from cosmic ray spectrum:
 e⁺/e⁻ excess (PAMELA, AMS-02), narrow γ line (Fermi)

Recent reviews:

Bertone, Hooper & Silk, Phys. Rept. 405 (2005) (see also PDG review on dark matter and Livio & Silk, Nature 507, March 2014)

Observation of Dark Matter particles

D = dark-matter particle, **S** = standard-model particle

taken from Livio & Silk, in Nature 507 (March 2014)

Observation of Dark Matter particles

D = dark-matter particle, **S** = standard-model particle

taken from Livio & Silk, in Nature 507 (March 2014)

Our search has focus on DM manifestations in radiative meson decays

Standard Model and Dark Matter

- Electromagnetic interaction
- Weak interaction
- Strong interaction
- + Gravity

Standard Model: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Standard Model and Dark Matter

- Electromagnetic interaction Weak interaction GUT
- Weak interaction
- Strong interaction
- + Gravity

Standard Model: $SU(3)_{c} \otimes SU(2)_{l} \otimes U(1)_{v} \otimes U(1)_{D} \otimes \dots \leftarrow hidden sector(s)$

Kinetic mixing of the $U(1)_{Y}$ and $U(1)_{D}$ gauge bosons provides a natural portal to this hidden sector via an effective interaction:

 $\mathcal{L}_{mix} = \epsilon \ e \ A^{D}_{\mu} J^{\mu}_{EM} \leftarrow$ L.B. Okun, Sov. Phys. 56 JETP (1982); B. Holdom, PLB 166 (1986)

Photon and Dark Photon (or U boson or A') mix at level ϵ , with $\epsilon^2 = \alpha'/\alpha$.

Where M_U = sub-MeV – multi-GeV and $\epsilon = 10^{-12} - 10^{-2}$ (model-dependent!)

If $m_{\rm U} > 2 \, m_{\rm e}$, the dark vector boson can decay into lepton (e⁺e⁻ or $\mu^+\mu^-$) or hadrons.

PANIC2014 Hamburg, Germany

Searching the U in electromagnetic processes

All EM processes can be modified by mixed-in dark photon \rightarrow search e.g. in:

- $e^- + A \rightarrow e^- + X + U$ (APEX, MAMI/A1)
- $\Phi \rightarrow \eta + U$ (KLOE-2)
- $\pi^0 \rightarrow \gamma + U$ (WASA, HADES)
- $\eta \rightarrow \gamma + U$ (HADES)
- $e^+e^- \rightarrow \mu^+\mu^- + U$ (BaBar, Belle, BES3)
- various beam-dump expts.
- g 2 (e and µ data)

Theory:

P. Fayet, PLB 95 (1980) 285, etc. Pospelov et al., PLB 662 (2008) 53 Pospelov, PRD 80 (2009) 095002 Batell et al., PRD 79 (2009) 114008 Reece & Wang, JHEP 0907 (2009) 051

PANIC2014 Hamburg, Germany

World set of U boson searches: upper limit (CL=90%) on ϵ^2

Constraints from the muon g-2 anomaly

- Dirac: point-like spin-½ particle has a gyromagnetic factor g = 2
- QED high-order terms lead to $g > 2 \rightarrow g-2$ anomaly
- Very precisely measured and calculated for the electron:

 $(g_e-2)_{exp} = 0.00231930436146(56)$ $(g_e-2)_{theo} = 0.00231930436225(172)$

exp & theory agree within errors

Remeasured recently at the Brookhaven AGS for the muon:

 $(g_{\mu}-2)_{exp} = 0.0023318418(13)$ $(g_{\mu}-2)_{theo} = 0.0023318360(10)$

PANIC2014 Hamburg, Germany

3.6 σ mismatch! → maybe due to new physics e.g. a dark photon ???

Muon g-2 status: Exp.: G. Bennet et al., PRD 73 (2006) Theo: M. Davier et al., EPJC 71 (2011)

Constraints on the U boson from g-2:

M. Pospelov, PRD 80 (2009) M. Endo et al., PRD 86 (2012)

Searching the U in electromagnetic processes

All EM processes can be modified by mixed-in dark photon \rightarrow search e.g. in:

- $e^- + A \rightarrow e^- + X + U$ (APEX, MAMI)
- $\Phi \rightarrow \eta + U$ (KLOE-2)
- $\pi^0 \rightarrow \gamma + U$ (WASA, HADES)
- $\eta \rightarrow \gamma + U$ (HADES)
- $e^+e^- \rightarrow \mu^+\mu^-$ (BaBar, Belle, BES3)
- various beam-dump expts.
- e and µ g -2 anomaly

Theory:

P. Fayet, PLB 95 (1980) 285, etc. Pospelov et al., PLB 662 (2008) 53 Pospelov, PRD 80 (2009) 095002 Batell et al., PRD 79 (2009) 114008 Reece & Wang, JHEP 0907 (2009) 051

PANIC2014 Hamburg, Germany

World set of U boson searches: upper limit (CL=90%) on ϵ^2

Band favored by muon g - 2 anomaly is not fully excluded yet!

Constraints on Dark Photon (status 2013)

taken from 2013 Snowmass Working Group Report, Essig et al, arXiv:1311.0029 [hep-ph]

The HADES experiment at GSI

High Acceptance DiElectron Spectrometer

HADES

The HADES experiment at GSI

HADES

The HADES Collaboration

<u>HADES</u>

Cyprus:

Department of Physics, University of Cyprus

Czech Republic: Nuclear Physics Institute, Academy of Sciences of Czech Republic

France: IPN Orsay, CNRS/IN2P3, Université Paris-Sud

Germany: GSI, Darmstadt TU Darmstadt FZ Dresden-Rossendorf IKF, Goethe-Universität Frankfurt II.PI, Justus Liebig Universität Giessen PD E12, Technische Universität München <mark>Italy:</mark> Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud

Poland: Smoluchowski Institute of Physics, Jagiellonian University of Cracow

<u>Portugal:</u> LIP-Laboratório de Instrumentação o Física Experimental de Partículas <u>Russia:</u>

INR, Russian Academy of Science Joint Institute of Nuclear Research ITEP

Spain:

Departamento de Física de Partículas University of Santiago de Compostela Instituto de Física Corpuscular, Universidad de Valencia-CSIC

Slovakia: Bratislava Univ.

> .7 institutions 100+ members

The RICH: excellent lepton ID

R. Holzmann, GSI

HADES

The RICH: excellent lepton ID

HADES

 π^0 Dalitz pair

e⁺e⁻ spectroscopy in few-GeV reactions

R. Holzmann, GSI

HADES

U boson search in meson decays

Searching Dark Matter in HADES

A How-to-do

- Search for a peak structure in the raw dN/dM_{ee} spectrum taking into account mass resolution
- 2. If no peak found, get an UL on peak
- 3. Transform this UL into an UL on the mixing parameter ϵ (or on ϵ^2)
- 4. Compare with other experiments
- 5. If better, publish result

Reaction	N_{LVL1}	N_{π^0}	N_{η}
p+p	$3.0 imes 10^9$	2.5×10^9	$1.5 imes 10^8$
p+Nb	7.7×10^9	5.9×10^9	$3.0 imes10^8$
Ar+KCl	$2.2 imes 10^9$	7.7×10^9	$1.9 imes 10^8$

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- > error on eff & acc correction = 15%

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- > error on eff & acc correction = 15%

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- > error on eff & acc correction = 15%

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- error on eff & acc correction = 15%

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- error on eff & acc correction = 15%

RAW invariant mass spectra

Analysis steps :

- Slide search region over data in 3-MeV steps
- Fit inspected region using sum of a 5th-order polynomial and a Gauss
- Keep position and width σ of Gauss fixed
- \blacksquare Fit window has width $M_U\pm 4\sigma$
- Use counts & fitted bkg to get UL at CL_{90%}

- total pair yield in peak region
- fitted background yield
- error on bkg from fit
- error on eff & acc correction = 15%

Smoothing the UL by resampling

To reduce the statistical fluctuations on UL a resampling method was used based on the Asimov data set (Cowan et al.).

Statistical Methods:

W.A. Rolke et al. NIM. A 551 (2005) 493.

G. Cowan et al., Eur. Phys. J. C 71 (2011) 1554.

DE

Smoothing the UL by resampling

R. Holzmann, GSI

HADES

Transforming UL on counts to UL on ϵ^2

Comparison of HADES with World data HADES

- HADES coverage : 0.02 < M_U < 0.6 GeV</p>
- Clear improvement at low masses (M_U < 0.1 GeV/c²)
- Parameter range favored by the muon g-2 anomaly excluded to large extent
- Added complementary information to the KLOE-2 results at M_U > 0.13 GeV

Comparison of HADES with World data HADES

- HADES coverage : 0.02 < M_U < 0.6 GeV</p>
- Clear improvement at low masses (M_U < 0.1 GeV/c²)
- Parameter range favored by the muon g-2 anomaly excluded to large extent
- Added complementary information to the KLOE-2 results at M_u > 0.13 GeV
- Updated MAMI A1 result further lowers UL in 40 – 200 MeV range, but does not yet fully exclude g-2 band!

What's coming up next?

- Adding data from a recent Au+Au run,
 HADES can lower its UL by a factor ≈2
- Dedicated expts.are coming up APEX, HPS, VEPP-3, Dark Light
 - → expected to reach $10^{-9} 10^{-8}$ level
- RHIC & LHC expts. entered game too: PHENIX, ALICE
 - → present sensitivity approaching $\epsilon^2 \simeq 10^{-6}$
 - → expect to reach $\epsilon^2 = 10^{-7}$ level after planned upgrades
 - → could access m_U >1 GeV region via QGP thermal radiation

So, no dark photon yet. Barking up the wrong tree ?

Well, who knows. There are for sure many trees, and we just have to check 'em all.

Update from U70 beam dump data

Blümlein & Brunner, Phys. Lett. B 731 (2014) 320

Analyzing:

π⁰ decays p bremsstrahlung

More from HADES

PANIC2014 Hamburg, Germany

 $\mathsf{BR}_{\eta\to e^+e^-}\!\!<\!2.5{\times}10^{-6}$ at 90% CL

HADES: Phys. Lett. B 731 (2014) 265

→ Still far above QCD inspired theoretical expectations: BR≃ 5×10⁻⁹

DES

Α

Combined UL on ϵ^2

All 3 data sets are of comparable statistical quality and ULs can be joined into one combined UL following a statistics-driven ansatz:

HADES

 $UL_{(1+2+3)} = \sqrt{(UL_{(1)}^{-2} + UL_{(2)}^{-2} + UL_{(3)}^{-2})^{-1}}$

The combined upper limit $UL_{(1+2+3)}$ is overall about 10-20% lower than the p+Nb value taken alone.

Technical layout of HADES

<u>HADES</u>

HADES + FW

inner MDC

RICH readout