

Search for exotic charmonium at BABAR

August 28th, 2014 | Elisabetta Prencipe(*), Forschungszentrum Jülich (Germany) | PANIC 2014, Hamburg (Germany)

(*) Previously addressed at JGU University of Mainz (Germany)

Outline

Recent results will be introduced. Selected topics of this talk:

- Analysis of the rare decay $B^{\pm,0} \rightarrow J/\psi \ KKK^{\pm,0}$
- Analysis of $B^0 \rightarrow J/\psi \phi$

arXiV: 1407.7244 [hep-ex] Submitted to PRD (2014)

• Analysis of $\eta_{r} \rightarrow K K \eta$ and $\eta_{r} \rightarrow K K \pi^{0}$ via 2-photon interactions

• Radiative transitions involving $\chi_{h_1}(1P, 2P)$

Draft in prepration

ed in der Helmholtz-Geme

PRD 89, 112004 (2014)

Introduction

- Exciting time to study exotic states using the full BABAR dataset.
- How many charmonium(-like) states can we count? CERN Yellow Report http://arxiv.org/abs/hep-ph/0412158

So many!

unexpected but found, expected and not found, controversial claims...

- 2014: 50th anniversary of CP violation discovery. Much progress thanks to the B-factories!
- 2014: 11 years after the observation of the unexpected X(3872).

<u>QUESTION</u>: What have we understood?

- The systems of $J/\psi \pi \pi$, $J/\psi \pi \pi \pi^0$ prove to be rich sources of information: still under study.
- What about J/ψKK (strangeness in charmonium)? Recently (partially) covered

Strangeness in Charmonium

 $b \rightarrow c \bar{s} s$

(suppressed B decays)

Elisabetta Prencipe

PANIC 2014, Hamburg

The BABAR experiment

Analysis $B \rightarrow J/\psi KK(K)$: motivation

- \blacksquare B \rightarrow J/ ψ K K K: rare B decay, Cabibbo suppressed, predicted BF ${\sim}10^{\text{-5}}$
- K^+K^- contribution expected to be dominated from ϕ [BF($\phi \rightarrow K^+K^-$) ~49.5%]
- B \rightarrow J/ $\psi \phi$ K: three body decay, gluon rich process \Rightarrow ideal place to look for exotics
- It could proceed also via quasi-2-body decay, B \rightarrow Y_a (ccss)K, Y_a \rightarrow J/ψ ϕ
- If any Y exists, expected mass < 4.3 GeV/c² (threshold DD^{**})
- **B**⁰ \rightarrow J/ $\psi \phi$: transition $b\bar{d} \rightarrow \bar{c}c\bar{s}s$ rescattering process \Rightarrow no signal expected

Analysis $B \rightarrow J/\psi KK(K)$: "old" measurements

- Old BaBar publication: PRL 91 (2003) 071801, 51 fb⁻¹
- Today: 424 fb⁻¹, 470M BB: expected much higher precision in BF measurements, and possibility to look at the invariant mass distributions

$B \rightarrow J/\psi KK(K)$: BF strategy

• B channels under study : B^{\pm} and B^{0}

• K^+K^- invariant mass in the full range [0.98;1.69] GeV/c²

PDG2012	decay channel	BR	$J^G \left(J^{PC} ight)$
	$a_0(980) \to K^+ K^-$	seen	$1^{-}(0^{++})$
	$f_0(980) \to K^+ K^-$	seen	$0^+(0^{++})$
	$\phi(1020) \rightarrow K^+ K^-$	$(48.9 \pm 0.5)\%$	$0^{-}(1^{})$
	$f_2(1270) \to K^+K^-$	$(4.6 \pm 0.4)\%$	$0^+(2^{++})$
	$a_2(1320) \to K^+K^-$	$(4.9\pm0.8)\%$	$1^{-}(2^{++})$
	$f'_2(1525) \to K^+K^-$	$(88.8 \pm 3.1)\%$	$0^+(2^{++})$
	$\phi(1680) \rightarrow K^+K^-$	seen	$0^{-}(1^{})$

Several resonant states decaying to K^+K^- . Expected dominant meson $(\rightarrow K^+K^-)$ in these B decays: ϕ

- Measurement of BFs:
 - blind analysis (large MC samples) to check consistency of fit methods
 - unbinned maximum likelihood fit of $m_{_{\rm ES}}$ (gaussian fit for signal yield; Argus function
 - to parametrize the background). Double check with ΔE fit is performed

$$m_{ES} = \sqrt{E_{beam}^* - p_{beam}^*} \qquad \Delta E = E_{beam}^* - \sqrt{s/2}$$

- K^+K^- invariant mass in the full range, then we restrict to the ϕ mass region
- J/ψ reconstructed to e^+e^- and $\mu^+\mu^-$; mass constrained

$B \rightarrow J/\psi KKK$: fits for BF measurements

9

JÜLICH

K⁺K⁻ invariant mass

arXiV: 1407.7244 [hep-ex]

- ϕ mass region selected to study $B \rightarrow J/\psi \phi K$
- ϕ meson dominant over the $K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$ combinations
- One-to-one correspondence between B candidate and ϕ candidate
- Observation of good signal, small background

$B \rightarrow J/\psi \phi(K)$: fits for BF measurements

Elisabetta Prencipe

IÜLICH

PANIC 2014, Hamburg

$B \rightarrow J/\psi KK(K)$: BF results

arXiV: 1407.7244 [hep-ex]

Submitted to PRD

TABLE I: Event yields, BF measurements (\mathcal{B}) and efficiencies (ϵ) for the different final states. The yields re-weighted by the average efficiency ($\bar{\epsilon}$) evaluated on PHSP MC distributions, and the yields re-weighted by the efficiency from the Dalitz plots (ϵ_D) are reported. BF measurements with the two different efficiency methods are compared for the channel $B^+ \to J/\psi K^+ K^- K^+$ (B^+_{KKK}), $B^+ \to J/\psi \phi K^+$ ($B^+_{\phi K}$), $B^0 \to J/\psi K^- K^+ K^0_S$ ($B^0_{KKK_S}$), and $B^0 \to J/\psi \phi K^0_S$ ($B^0_{\phi K_S}$). The $B^0 \to J/\psi \phi$ (B^0_{ϕ}) UL at 90% c.l. is listed at the end of the table.

					Case A	Case B
<i>B</i> channel	Event yield	$\bar{\epsilon}$ (%)	Corrected yield $(\bar{\epsilon})$	Corrected yield (ϵ_D)	$\frac{\mathcal{B} (\times 10^{-5})}{\text{calculated with } \bar{\epsilon}}$	$\frac{\mathcal{B} (\times 10^{-5})}{\text{calculated with } \epsilon_D}$
B^{+}_{KKK} $B^{+}_{\phi K}$ B^{0}_{KKKS} $B^{0}_{\phi KS}$ B^{0}_{ϕ}	290 ± 22 189 ± 14 68 ± 13 41 ± 7 6 ± 4	17.96 ± 0.04 16.28 ± 0.04 11.31 ± 0.04 10.73 ± 0.04 31.12 ± 0.07	$\begin{array}{c} 1615{\pm}122\\ 1161{\pm}~86\\ 586{\pm}115\\ 382{\pm}~65\\ 19~{\pm}~13 \end{array}$	1904 ± 144 1396 ± 103 639 ± 125 406 ± 69 -	$5.86\pm0.44 \text{ (stat)}\pm0.24 \text{ (sys)}$ $4.21\pm0.31 \text{ (stat)}\pm0.13 \text{ (sys)}$ $3.07\pm0.59 \text{ (stat)}\pm0.13 \text{ (sys)}$ $2.00\pm0.34 \text{ (stat)}\pm0.05 \text{ (sys)}$ < 0.101	$6.91\pm0.52 \text{ (stat)}\pm0.28 \text{ (sys)}$ $5.06\pm0.37 \text{ (stat)}\pm0.15 \text{ (sys)}$ $3.35\pm0.66 \text{ (stat)}\pm0.15 \text{ (sys)}$ $2.13\pm0.36 \text{ (stat)}\pm0.06 \text{ (sys)}$ -

The difference between the case A) and B) is due to the K⁺K⁻ correction in the Dalitz structure

arXiV: 1407.7244 [hep-ex] Submitted to PRD

$$R_{+} = \frac{\mathcal{B}(B^{+} \to J/\psi K^{+} K^{-} K^{+})}{\mathcal{B}(B^{+} \to J/\psi \phi K^{+})} = 1.39 \pm 0.15 \pm 0.07$$

$$R_0 = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_s^0)}{\mathcal{B}(B^0 \to J/\psi \phi K_s^0)} = 1.54 \pm 0.40 \pm 0.08$$

$$R_{\phi} = \frac{\mathcal{B}(B^0 \to J/\psi \phi K_s^0)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} = 0.48 \pm 0.09 \pm 0.02$$

$$R_{2K} = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_s^0)}{\mathcal{B}(B^+ \to J/\psi K^+ K^- K^+)} = 0.52 \pm 0.09 \pm 0.03$$

BFs in agreement with the prediction of the quark spectator model
 K⁺K⁻ contribution to BFs outside the φ mass region: <u>first measurement</u>
 Old Babar measurement on B →J/ψφK confirmed, now with >4 times precision
 <u>currently_highest_world precision</u> of these BF measurements!

Elisabetta Prencipe

$B \rightarrow J/\psi KKK$: search for exotics

- Signal box selected: $m_{ES} > 5.27 \text{ GeV/c}^2$; $|\Delta E| < 30 \text{ MeV} (B^{\pm})$ and $|\Delta E| < 25 \text{ MeV} (B^{0})$
- Mass resolution at the J/ $\psi\phi$ threshold: 2 MeV/c²
- Search for resonant states in J/ ψ KK, J/ ψ K, KKK
- J/ $\psi\phi$ invariant mass gained more attention because of several recent publications
- J/ ψ and ϕ are <u>vectors</u>: <u>high spin contribution expected</u>
- Efficiency as function of the invariant mass must be taken into account
- In our fit: mass and width fixed to the CDF values (first publication on res. structure)

Experiment	ref	$M_{X(4140)}$	$\Gamma_{X(4140)}$	-
		$[MeV/c^2]$	[MeV]	_
CDF	PRL102.242002(2009)	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{5.0}\pm 3.7$	✓ OBSERVATION
CDF	arXiv:1101.6058	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.2^{+10.4}_{6.1}\pm2.5$	-
LHCb	PRD85,091103(2012)	-	-	NO EVIDENCE
CMS	PRB734,261(2014)	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11}\pm19$	OBSERVATION
D0	PRD89,012004(2014)	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+1.0}_{-8.0}$	EVIDENCE
		$M_{X(4270)}$	$\Gamma_{X(4270)}$	
		$[MeV/c^2]$	[MeV]	
CDF	arXiv:1101.6058	$4274.4^{+8.4}_{-6.7}\pm1.9$	$32.3^{+21.1}_{15.3} \pm 7.6$	EVIDENCE
LHCb	PRD85,091103(2012)	-	-	NO EVIDENCE
CMS	PRB734,261(2014)	$4313.8 \pm 5.3 \pm 7.3$	$38^{+30}_{-15}\pm16$	OBSERVATION
D0	PRD89,012004(2014)	\approx 4360	30(fixed)	- NO EVIDENCE, but
Elisabetta P	rencipe			BETTER FIT

The controversial picture of $m_{J/\psi\phi}$

$B \rightarrow J/\psi \phi K$: reconstruction efficiency

arXiV: 1407.7244 [hep-ex] <u>Sub</u>mitted to PRD

- Efficiency lower at the J/ $\psi\phi$ mass threshold due to the difficulty to reconstruct low momentum kaon
- Charged B channel more sensitive to the efficiency change at the J/ψφ threshold compared to B⁰ channel, due to the poorer φ (→K⁺K⁻)reconstruction

$B \rightarrow J/\psi \phi K$: invariant mass fit

arXiV: 1407.7244 [h<u>ep-ex]</u>

Submitted to PRD

- Unbinned maximum likelihood fit
- Central value and width of the Breit-Wigners are fixed in the fit
- 2 Breit-Wigner + PHSP function <u>re-weighted</u> by 2D-efficiency map from <u>Dalitz plots</u>
- Background estimated from ΔE sidebands

$B \rightarrow J/\psi \phi K$: mass fit results

arXiV: 1407.7244 [hep-ex] Submitted to PRD

- These results <u>are background</u> <u>corrected</u>.
- Small background: purity 89% (B[±]) and 82% (B⁰)
- χ² of fits acceptable in all cases: no hypothesis should be rejected

Our fit:

- S-wave relativistic Breit-Wigners;
- non-resonant contribution represented by a constant term;
- no interference allowed between the fit components;
- small bkg from ΔE sidebands, consistent with PHSP behavior (incorporated in the non-resonant PHSP term);
- high spin contribution expected, but angular term non included due to poor statistics (we assume that the resonances decay isotropically)

fit without resonances (phase space): $\chi^2/\mathrm{ndof} = 26.4/14$

fit with two resonances (parameters fixed to CDF) : $\chi^2/\text{ndof} = 12.7/12$

 $f_{X(4140)} = (9.2 \pm 3.3 \pm 4.7)\%, \ f_{X(4270)} = (10.6 \pm 4.8 \pm 7.1)\%$

 $f_{X(4140)} = (13.2 \pm 3.8 \pm 6.8)\%, \ f_{X(4270)} = (10.9 \pm 5.2 \pm 7.3)\%$

Parameters fixed to the CDF values PRL102,242002(2009)

Parameters fixed pLB734,261(2014) to the CMS values

$B \rightarrow J/\psi \phi K$: fractions

arXiV: 1407.7244 [hep-ex] Submitted to PRD

$\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \phi) / \mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to X(4140)K^+) \times \mathcal{B}(X(4140) \to X(4140)K^+) \times \mathcal{B}(X(4140)K^+) \times \mathcal{B}(X(4140) \to X(4140)K^+) \times \mathcal{B}(X(4140)K^+) \times B$	$J/\psi \phi K^+) < 0.135$
$\mathcal{B}(B^+ \to X(4270)K^+) \times \mathcal{B}(X(4270) \to J/\psi \phi)/\mathcal{B}(B^+ \to X(4270)K^+) \times \mathcal{B}(X(4270) \to X(4270)K^+) \times \mathcal{B}(X(4270) \to X(4270)K^+) \times \mathcal{B}(X(4270)K^+) \times \mathcal{B}(X(4270$	$J/\psi \phi K^+) < 0.184$

U.L. @ 90% c.l.

X(4140) and X(4270) on 422.5 fb⁻¹ integrated luminosity: <2σ effect (within sys. uncertainties) No additional structures are shown in the other invariant mass systems

Experiment	ref	$f_{X(4140)}$ [%]
CDF	PRL102.242002(2009)	-
CDF	arXiv:1101.6058	$14.9\pm2.9\pm2.4$
LHCb	PRD85,091103(2012)	< 7
CMS	PRB734,261(2014)	13.4 ± 3.0
D0	PRD89,012004(2014)	$19\pm7\pm4$
		$f_{X(4270)}$ [%]
CDF	arXiv:1101.6058	-
LHCb	PRD85,091103(2012)	< 8
CMS	PRB734,261(2014)	18.0 ± 7.3
D0	PRD89,012004(2014)	-

$B \rightarrow J/\psi \phi K$: BABAR re-weighted data

arXiV: 1407.7244 [hep-ex] Submitted to PRD

What happens if we re-weight data (not the fit function) by the Dalitz efficiency?

- (a) Average efficiency distribution as a function of the $J/\psi\phi$ mass for $B^+ \to J/\psi\phi K^+$
- (b) Efficiency corrected $J/\psi\phi$ for the combined B^+ and B^0 samples
- (c) Efficiency corrected and background subtracted $J/\psi\phi$ mass spectrum for the combined B^+ and B^0 samples

Significance < 2 σ within systematic uncertainties

Elisabetta Prencipe

$B \rightarrow J/\psi\phi K$: comparison (I)

21

What did we learn from the other experiments? The result of the analysis of $m(J/\psi\phi)$ is still controversial

CDF Coll., PRL 102, 242002 (2009); LHCB Coll., PRD 85, 091103 (2010); D0 Coll., PRD 89, 012004 (2014); CMS Coll., PRB 734, 261 (2014)

$B \rightarrow J/\psi \phi K$: comparison (II)

<u>Note</u>: BABAR re-weighed data ($B^0 + B^{\pm}$); other experiments: only B^{\pm} , only $J/\psi \rightarrow \mu\mu$

Aitalied in der Helmho

Search for exotics in $m(J/\psi\phi)$ – Belle

No evidence for Y(4140) and/or Y(4270)! ...indeed hint of a new resonant state is found...

- X(4140) and X(4270), after 5 years of discussions and search in several modes, are <u>not observed in any other decay mode</u>, except m(J/ $\psi\phi$) in B⁺, with J/ $\psi \rightarrow \mu^+\mu^-$ only
- Not all experiments confirm their observation, neither evidence in some cases. Are they real resonances?

Remarks on X(4140)

- No evidence in BABAR, in B decays, with $J/\psi \rightarrow e^+e^- and \mu^+\mu^-$
- BABAR data reweighted by efficiency: $<2\sigma$ within systematic effects, on 469 M BB
- THE BABAR UL is consistent with what was published from other experiments.
- BABAR and BELLE show the same efficiency behaviour at threshold of m(J/ψφ): poorer φ reconstruction; in BABAR this effect is taken into account in the fit.
- No experiment shows additional decay mode for Y(4140) until now.

So:

- All experiments agree that the invariant mass system of $J/\psi\phi$ cannot be simply described by PHSP
- 2 vectors can be polarized: <u>need full Dalitz analysis</u> and higher statistics
- "Enhancements" does not mean only new resonant state! If real resonance, would expect to be seen in different decay modes
- B⁺: controversial interpretation of data of the inv. mass distribution of $J/\psi\phi$;
- B^0 : no evidence for Y(4140) and Y(4270) in BABAR and LHCb (\rightarrow x20 statistics)

Search for new resonances via $\gamma\gamma$ interactions

Elisabetta Prencipe

PANIC 2014, Hamburg 25

Dalitz analysis $\eta_c \rightarrow K^+ K^- \eta / \pi^0$

- 2-photon interactions:
 e⁺e⁻ interact and emit a quasi-real photon, which can form resonances.
- <u>Clear signature</u>: J=0[±],2[±], ... ; the resonant state (if any) cannot be vector
- In BABAR resonant states are observed in 2-photon interactions: X(3915), ...
- Low p_t respect to the beam axis
- Final state emitted along the beam direction

• $\eta_{r}(nS)$ decays not well known

 $\sum \mathcal{B}(\eta_c(1S)) \approx 20\%; \qquad \sum \mathcal{B}(\eta_c(2S)) \approx 5\%$

- Advantage of this search in BaBar: large event yield
- Excellent S/B: non-resonant hadronic cross section is small

Search for exotic states in η_{c} decays

PRD 89, 112004 (2014)

- BES III showed:
 - 6.7 \pm 3.2 events for $\eta_c(nS) \rightarrow K^+K^-\eta$
 - 54.9 \pm 9.2 events for $\eta_c(nS) \rightarrow K^+K^-\pi^0$

PRD 86 (2012) 010001

- No publication exists on Dalitz plot analysis of η_{c} to 3 pseudo-scalar mesons

- $\eta_c(1S) \rightarrow K^+K^-\eta$: 1145 events First observation
- $\eta_c(2S) \rightarrow K^+K^-\eta$: 47 events First evidence

•
$$\eta_c(1S) \rightarrow K^+ K^- \pi^0$$
: 4518 events

• $\eta_c(2S) \rightarrow K^+ K^- \pi^0$: 178 events

Resonance	Mass $({\rm MeV}/c^2)$	$\Gamma ~({ m MeV})$
$\eta_c \rightarrow K^+ K^- \eta$	$2984.1 \pm 1.1 \pm 2.1$	$34.8 \pm 3.1 \pm 4.0$
$\eta_c \rightarrow K^+ K^- \pi^0$	$2979.8 \pm 0.8 \pm 3.5$	$25.2 \pm 2.6 \pm 2.4$
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$3635.1 \pm 5.8 \pm 2.1$	11.3 (fixed)
$\eta_c(2S) \rightarrow K^+ K^- \pi^0$	$3637.0 \pm 5.7 \pm 3.4$	11.3 (fixed)

BF measurements

PRD 89, 112004 (2014)

Channel	Event yield	Weights	\mathcal{R}	Significance
$\eta_c \rightarrow K^+ K^- \pi^0$	$4518 \pm 131 \pm 50$	17.0 ± 0.7		32σ
$\eta_c \rightarrow K^+ K^- \eta \ (\eta \rightarrow \gamma \gamma)$	$853 \pm 38 \pm 11$	21.3 ± 0.6		21σ
$\mathcal{B}(\eta_c \rightarrow K^+ K^- \eta) / \mathcal{B}(\eta_c \rightarrow K^+ K^- \pi^0)$			$0.602 \pm 0.032 \pm 0.065$	
$\eta_c \to K^+ K^- \eta \ (\eta \to \pi^+ \pi^- \pi^0)$	$292 \pm 20 \pm 7$	31.2 ± 2.1		14σ
$\mathcal{B}(\eta_c \rightarrow K^+ K^- \eta) / \mathcal{B}(\eta_c \rightarrow K^+ K^- \pi^0)$			$0.523 \pm 0.040 \pm 0.083$	
$\eta_c(2S) \rightarrow K^+ K^- \pi^0$	$178 \pm 29 \pm 39$	14.3 ± 1.3		3.7σ
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$47 \pm 9 \pm 3$	17.4 ± 0.4		4.9σ
$\mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \eta) / \mathcal{B}(\eta_c(2S) \rightarrow K^+ K^- \pi^0)$			$0.82 \pm 0.21 \pm 0.27$	
$\chi_{c2} \rightarrow K^+ K^- \pi^0$	$88\pm27\pm23$			2.5σ
$\chi_{c2} \rightarrow K^+ K^- \eta$	$2\pm5\pm2$			0.0σ

Mitglied in der Helmholtz-Gem

 $\eta_{c}(1S) \qquad \mathcal{R}(\eta_{c}) = \frac{\mathcal{B}(\eta_{c} \to K^{+}K^{-}\eta)}{\mathcal{B}(\eta_{c} \to K^{+}K^{-}\pi^{0})} = 0.571 \pm 0.025 \pm 0.051$ BESIII: 0.46 ± 0.24

$$\eta_{c}(2S) \qquad \mathcal{R}(\eta_{c}(2S)) = \frac{\mathcal{B}(\eta_{c}(2S) \to K^{+}K^{-}\eta)}{\mathcal{B}(\eta_{c}(2S) \to K^{+}K^{-}\pi^{0})} = 0.82 \pm 0.21 \pm 0.27$$

Elisabetta Prencipe

PANIC 2014, Hamburg

Dalitz plot: $\eta_c(1S) \rightarrow K^+K^-\eta$

JÜLICH FORSCHUNGSZENTRUM

Elisabetta Prencipe

PANIC 2014, Hamburg

Dalitz plot: $\eta_c(1S) \rightarrow K^+ K^- \pi^0$

PRD 89, 112004 (2014)

Final state	Fraction $\%$	Phase (radians)
$K_0^*(1430)^+K^-$	33.8 \pm 1.9 \pm	0.4 0.
$K_0^*(1950)^+K^-$	$6.7~\pm~1.0~\pm$	$0.3 - 0.67 \pm 0.07 \pm 0.03$
$a_0(980)\pi^0$	$1.9~\pm~0.1~\pm$	$0.2 \ \ 0.38 \pm \ 0.24 \pm \ 0.02$
$a_0(1450)\pi^0$	10.0 \pm 2.4 \pm	0.8 $-2.4 \pm 0.05 \pm 0.03$
$a_2(1320)\pi^0$	$2.1~\pm~0.1~\pm$	$0.2 \ \ 0.77 \pm \ 0.20 \pm \ 0.04$
$K_2^*(1430)^+K^-$	$6.8~\pm~1.4~\pm$	$0.3 \ \text{-}1.67 \ \pm \ 0.07 \ \pm \ 0.03$
NR	$24.4~\pm~2.5~\pm$	$0.6 \ 1.49 \pm 0.07 \pm 0.03$
Sum	85.8 \pm 3.6 \pm	1.2
χ^2/ν	212/130	

 $K^{\pm}\pi^{0}$ dominated by $K_{0}^{*}(1430)$

PANIC 2014, Hamburg

Elisabetta Prencipe

K_o*(1430) properties

Elisabetta Prencipe

Radiative Y(nS) transitions

Elisabetta Prencipe

PANIC 2014, Hamburg ³²

Radiative Y(nS) decays: motivation

- Generally well predicted from phenomenological models PRD 84 (2011) 094501
- Measure BF and mass splitting for radiative transition using BaBar Y(2S) and Y(3S) data

BaBar sample: 14 fb⁻¹ Y(2S); 28 fb⁻¹ Y(3S)

Analysis measure:

$$Y(3S) \rightarrow \gamma \chi_{bJ}(2P), \chi_{bJ}(2P) \rightarrow \gamma Y(1S, 2S)$$

$$Y(1S, 2S) \rightarrow \mu^{+}\mu^{-} \qquad 3S \rightarrow 2P \rightarrow 1S, 3S \rightarrow 2P \rightarrow 1S$$

$$Y(2S) \rightarrow \gamma \chi_{bJ}(1P), \chi_{bJ}(1P) \rightarrow \gamma Y(1S), Y(1S) \rightarrow \mu^{+}\mu^{-}$$

$$2S \rightarrow 1P \rightarrow 1S$$

 $\begin{array}{c} Y(3S) \rightarrow \gamma \chi_{bJ}(1P), \chi_{bJ}(1P) \rightarrow \gamma Y(1S), Y(1S) \rightarrow \mu^{+}\mu^{-} \\ 3S \rightarrow 1P \rightarrow 1S \end{array}$

- Event samples:
 - 2 calorimeter photons;
 - 1 calorimenter γ , one γ from conversion

2 calorimeter photons

PANIC 2014, Hamburg

1 γ from conversion, 1 γ from calorimeter 🕖 JÜLICH

Summary

- New exciting results from BABAR in charmonium and bottomonium spectroscopy
- Search for hybrids in the B decays: B^{±,0} →J/ψKKK^{±,0} (charged <u>and</u> neutral B) All K⁺K⁻ inv mass range under exam for the <u>first time</u>: <u>no main structure</u> is evident K⁺K⁻ inv mass restricted to φ meson in [1.004;1.034] GeV/c²:
 - $J/\psi K$ and KKK systems PHSP distributed;
 - J/ $\psi \phi$ system shows a non-PHSP behaviour
- Search for X(4140) and X(4270) in J/ $\psi\phi$ inv mass system: no evidence.
- UL are set up compatible with what published from other experiments.
- Interpretation of $J/\psi\phi$ inv mass system is difficult, because:
 - dynamics of J/ ψ and ϕ (vectors) interaction is complicated: full Dalitz analysis needed;
 - different hypotheses for explaining the presence of a non-PHSP behavior at the threshold.
- Currently <u>highest world precision</u> in BR and UL measurements.
- Non resonant K^+K^- contribution to the BF of B $\rightarrow J/\psi KKK$: first measurement
- <u>First observation</u> of $K_0^*(1430)$ in the Dalitz analysis of $\eta_c \rightarrow KK\eta/\pi^0$ via $\gamma\gamma$ interaction
- <u>Best evidence</u> for $\chi_{h,l}(nP) \rightarrow \gamma Y$ transition

Thank you for your attention!

Elisabetta Prencipe

PANIC 2014, Hamburg

Back up slides

$B \rightarrow J/\psi \phi K$: comparison

Elisabetta Prencipe

PANIC 2014, Hamburg