

Searches for dark matter and extra dimensions with the ATLAS detector

Christophe Clément – Stockholm University on behalf of the ATLAS collaboration

Particles and Nuclei International Conference – Hamburg – 2014

Dark Matter (DM)

- Galactic rotation curves, gravitational lensing
- DM ~25% of universe (Planck / WMAP)
- Collider search for DM particle WIMP χ complements direct/ indirect DM searches

Extra Dimensions

- Possible solution to the weakness of gravitation,
- Many models, select here searches sensitive to black holes.

Hidden Valley

- Arises in many top-down models including string-theory constructions
- Can provide for DM candidates

Dark Matter Search with Mono-X Signatures

Display of a high p_T jets recoiling against missing transverse energy E_{T} (miss).

Mono-W/Z Searches – hadronic W/Z decay

Hadronic W/Z decay observed as massive jet.

Phys. Rev. Lett. 112, 041802 (2014)

Mono-W/Z Searches – hadronic W/Z decay

Hadronic W/Z decay observed as massive jet.

With W production, sensitive to the sign of DM coupling to the up- and down-quarks:

- Constructive interference if C(u)=-C(d)
- if C(u)=C(d)• Destructive interference

=> Several order of magnitudes variation on the WIMP-nucleon cross section

Phys. Rev. Lett. 112, 041802 (2014)

Mono-W/Z →Hadrons – Selections & Backgrounds

Top and diboson production from Monte Carlo simulation.

Mono- $Z \rightarrow l^+l^-$ and Mono- $W \rightarrow lv -$ Selections

Mono-Z Phys. Rev. D 90, 012004 (2014) Mono-W arXiv:1407.7494 [hep-ex] accepted by JHEP

Mono-W Signal Region ev, μv • e-channel p_T> 125 GeV

• µ-channel p_T> 45 GeV

Balanced

- e-channel E_T(miss)> 125 GeV
- μ-channel E_T(miss)> 45 GeV

Final

 $m_T = \sqrt{2p_T E_T(miss)(1 - \cos\varphi_{lv})} > m_{T\min}$ where the optimal value of $m_{T\min}$ is optimised for each model.

Signal Regions E_T(miss)>150, 250, 350, 450 GeV

Irreducible backgrounds

 $ZZ \rightarrow \ell^+ \ell^- \overline{\nu} \nu$ W⁺W⁻ $\rightarrow \ell^+ \nu \ell^- \overline{\nu}$ From MC with NLO generator

Reducible backgrounds

WW, top, $Z \rightarrow \tau \tau$ from eµ data Z+jets and W+jets from data CR.

Signal Regions

 $m_T > m_{T \min} = 252 \text{GeV}$ and higher bins

Main backgrounds

Tail of the m_T distribution in W+jets Z+jets with one non-reconstructed lepton From NLO event generators+NNLO cross sections+higher order EW corrections K-factors per mass bin.

Additional backgrounds top, diboson <10 %, from simulation.

Dark Matter mono-X Summary

Sensitivity of the signal regions at low m_{χ} is independent on m_{χ} .

Powerful <u>spin-dependent</u> limits over entire mass range

Powerful spin-independent at low mass.

Validity of effective theory and effect on limits is under study in ATLAS.

Invisible Higgs Search $H \rightarrow \chi \overline{\chi}$

DM particles search with $m_{\chi} < m_{H}/2$

- 1) Reinterpretation of mono-W/Z hadronic Phys. Rev. Lett. 112, 041802 (2014)
- χ \overline{q} χ H . W/ZW/Z q/ℓ^{-} q \overline{q}/ℓ^+ $\sigma(W/Z H \rightarrow W/Z inv) / \sigma_{total SM}(W/Z H)$ Observed 95% CL SR: E_{τ}^{miss} > 350 GeV Expected 95% CL Expected $\pm 1 \sigma$ Expected $\pm 2 \sigma$ **ATLAS** 20.3 fb⁻¹ √s = 8 TeV 200 220 240 260 300 280 180 m_н [GeV] mono-W/Z hadronic reinterpretation $\sigma (W/Z+H \rightarrow W/Z+inv.) / \sigma_{W/Z+H} < 1.6$ for a Higgs mass of 125 GeV.

 Dedicated search with Z→ℓ⁺ℓ⁻ Phys. Rev. Lett. 112, 201802 (2014) Selections close but not identical to that of mono-Z with leptonic decay.

Invisible Higgs search $pp \rightarrow (Z \rightarrow \ell^+ \ell^-)(H \rightarrow \chi \overline{\chi})$

[~] 10⁻³⁷ 10⁻³⁸ 10⁻³⁹ 10⁻⁴⁰ 10⁻⁴¹

DM-Nucl

10⁻⁴⁹

10⁻⁵⁰

10⁻⁵¹

Higgs-portal Model

States and a state

95% CL upper limits on $\sigma_{ZH} \times BR(H \rightarrow inv.)$ in the mass range 110<m_H< 400 GeV

Upper limit of BR(H \rightarrow inv.)=0.75 at 95% CL (Expected limit of 0.62 at 95% CL)

Higgs-portal DM scenario Higgs boson is mediator between DM and SM.

10

ATLAS

 10^{2}

√s = 7 TeV, ∫ Ldt=4.5 fb

 $\sqrt{s} = 8 \text{ TeV}.$ $\int Ldt = 20.3 \text{ fb}^{-1}$

90% CL

ENON10

ATLAS, scalar DM

DM Mass [GeV]

 $ZH \rightarrow \ell\ell + inv.$

Upper limit on the DM-nucleon scattering cross section.

DM candidate= Scalar, vector or a Majorana fermion.

Searches for Hidden Sector (HS) with long-lived particles

Benchmark Model

Scalar Φ_{HS} couples to mass in the same manner as the Higgs. Confining gauge in HS => v-hadrons.

$\pi_{\rm V}$ is long-lived (LL)

here present a search for π_v decays in the hadronic calorimeter or near the outer edge of the electromagnetic calorimeter.

ATLAS CONF Note https://atlas.web.cern.ch/Atlas/GROUPS/ PHYSICS/CONFNOTES/ATLAS-CONF-2014-041/

<u>CalRatio trigger</u> looks for π_V decay near the outer radius of ECal or within the HCal.

energy ratio Hadron / EM calorimeter

Signal selection

Two jets must satisfy $\log_{10}(E_H/E_{EM}) > 1.2$ $E_T(jet1)>60 \text{ GeV}$ No tracks close to the jets $E_T(miss) < 50 \text{ GeV}$

Main background= multijet, derived from data

exclusion limit on $\sigma \times BR$ for $m_{\phi_{HS}}$ =140 GeV

Results for $m_{\Phi HS}$ =126 GeV

MC sample	excluded range	excluded range
$m_{\Phi}, m_{\pi v}$	$30\% \text{ BR } \Phi_{\text{HS}} \rightarrow \pi_{\text{v}} \pi_{\text{v}}$	10% BR $\Phi_{\rm HS} \rightarrow \pi_{\rm v} \pi_{\rm v}$
[GeV]	[m]	[m]
126, 10	0.10 - 4.38	0.13 - 2.30
126, 25	0.27 - 10.01	0.37 - 5.12
126, 40	0.54 - 12.11	0.86 - 5.62

Black Holes

Predicted in models with *n* extra dimensions. SM particles confined to 3+1 dimensions. Fundamental gravity scale M_D given by $M_D^{2+n} = M_{Pl}^2 R^{-n}/8\pi$ could be O(1TeV)

Quantum

- BH most likely produced close to the production threshold M_{th}.
- Regime where M_{th} close to M_D, below classical BH regime => 2-particle states
- Strong gravity => more transverse (p_T) than background.
- <u>Low particle multiplicity</u>, possible decay to quark + lepton => violation of B and L.
- Look for lepton+jet signature, localised excess in M(l,jet)

Accepted by JHEP http://arxiv.org/abs/1405.4254

Classical

- Semiclassical, thermal black holes, approximation valid for M_{th}>> M_D
- Lose mass and angular momentum via Hawking radiation
- All types of SM particles are emitted
- Signature of <u>high multiplicity of high</u> <u>p_T particles</u>
- 1 high-p_T isolated lepton e/µ & ≥2 objects with p_T>100 GeV

 $\sum p_T = \sum_{\substack{i = leptons, jets \\ p_{T,i} > 60 \text{GeV}}} p_{T,i} > 2000 \text{ GeV}$

Phys. Rev. Lett. 112, 091804 (2014)

Signal Region e or μ with $p_T > 130$ GeV ≥ 1 jet with $p_T > 130$ GeV

 $\frac{M(l,jet) > M_{min} with}{e-channel M(l,jet) = 0.9M_{th}}$ $\mu-channel M(l,jet) = [0.95 - 0.05M_{th} / 1TeV]M_{th}$

Multijet and EW background templates fitted to E_T (miss) (e-channel) and d0 (μ -channel) data distributions. Excellent agreement

Signal region e or μ with $p_T > 130 \text{ GeV}$ $\sum p_T > 2000 \text{ GeV}$

W/Z+jets and top background derived from control regions in data

Excellent agreement b/w data and prediction

Black Holes limits

Quantum BH – two-particle signature Upper limit on the QBH prediction from qq pairs

QBH excluded up to 5.5 TeV.

Classical BH – multiparticle signature

Conclusions

ATLAS has set new stringent limits on Dark Matter production using multiple final states. Particularly powerful in *spin-dependent case at all masses* and *low mass spin-independent*. Hidden Valley search based on displaced particle decays was presented, uses dedicated triggers. *Classical* and *Quantum black* hole searches have been performed in multiple scenarios.