Inclusive searches for squarks and gluinos with the ATLAS detector

Bertrand MARTIN, University of Bergen

on behalf of the ATLAS Collaboration

20th Particles & Nuclei International Conference

25-29 August 2014 Hamburg, Germany

Introduction

Universe content visible matter 5%

FL A	۱S	SUSY	Searches	* - 95%	CL	Lower	Limits

Model		e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	Mass limit		Reference
	MSUGRA/CMSSM	0	2-6 jets	Yes	20.3	<i>q̃, g̃</i> 1.7 TeV	$m(\tilde{q})=m(\tilde{g})$	1405.7875
	MSUGRA/CMSSM	1 e,µ	3-6 jets	Yes	20.3	ğ 1.2 TeV	any m (\tilde{q})	ATLAS-CONF-2013-062
ŝ	MSUGRA/CMSSM	0	7-10 jets	Yes	20.3	ğ 1.1 TeV	any m (\tilde{q})	1308.1841
ĕ	$\tilde{a}\tilde{a}, \tilde{a} \rightarrow a\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	ğ 850 GeV	$\mathfrak{m}(\tilde{\mathcal{X}}_{1}^{0})=0$ GeV. $\mathfrak{m}(1^{st}$ gen. $\tilde{\mathfrak{q}})=\mathfrak{m}(2^{nd}$ gen. $\tilde{\mathfrak{q}})$	1405.7875
to	$\tilde{\rho}\tilde{\varrho}, \tilde{\varrho} \rightarrow d\bar{a}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	20.3	ğ 1.33 TeV	$m(\tilde{\chi}_1^0) = 0 \text{ GeV}$	1405.7875
Bal	$\tilde{p}\tilde{p}, \tilde{p} \rightarrow aa\tilde{\chi}_{1}^{\pm} \rightarrow aaW^{\pm}\tilde{\chi}_{1}^{0}$	1 e, µ	3-6 jets	Yes	20.3	ž 1.18 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{\varrho}))$	ATLAS-CONF-2013-062
Š	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow aa(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$	2 e, µ	0-3 jets	-	20.3	ğ 1.12 TeV	$m(\tilde{\chi}_{1}^{0})=0$ GeV	ATLAS-CONF-2013-089
e	GMSB (<i>l</i> NLSP)	2 e, µ	2-4 jets	Yes	4.7	ğ 1.24 TeV	$\tan\beta < 15$	1208.4688
Inclusiv	GMSB (Ĩ NLSP)	$1-2\tau + 0-1\ell$	0-2 jets	Yes	20.3	ž 1.6 TeV	$tan\beta > 20$	1407.0603
	GGM (bino NLSP)	2γ	-	Yes	20.3	ğ 1.28 TeV	$m(\tilde{\chi}_{1}^{0}) > 50 \text{GeV}$	ATLAS-CONF-2014-001
	GGM (wino NLSP)	$1 e, \mu + \gamma$	-	Yes	4.8	ğ 619 GeV	$m(\tilde{\chi}_{1}^{0}) > 50 \text{ GeV}$	ATLAS-CONF-2012-144
	GGM (higgsino-bino NLSP)	γ	1 <i>b</i>	Yes	4.8	900 GeV	$m(\tilde{\chi}_{1}^{0}) > 220 \text{ GeV}$	1211.1167
	GGM (higgsino NLSP)	$2 e, \mu (Z)$	0-3 jets	Yes	5.8	ğ 690 GeV	m(NLSP)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	10.5	F ^{1/2} scale 645 GeV	$m(\tilde{G}) > 10^{-4} eV$	ATLAS-CONF-2012-147
<u> </u>	$\tilde{q} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 b	Yes	20.1	ž 1.25 TeV	m(𝔅μ)<400 GeV	1407.0600
e Se	$\tilde{q} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0	7-10 jets	Yes	20.3	ğ 1.1 TeV	$m(\tilde{\chi}_{1}^{0}) < 350 \text{GeV}$	1308.1841
B	$\tilde{q} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0-1 <i>e</i> , μ	3 b	Yes	20.1	ğ 1.34 TeV	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$	1407.0600
00 3	$\tilde{g} \rightarrow b t \tilde{\chi}_1^+$	0-1 <i>e</i> , μ	3 b	Yes	20.1	ğ 1.3 TeV	$m(\tilde{\chi}_1^0) < 300 \text{GeV}$	1407.0600

0 lepton + 2-6 jets + MET

<u>1405.7875</u> sub. to JHEP

Large number of models with such signature.

- jet + MET trigger
- e/µ veto
- $\Delta \phi_{min}(jet,MET)$, MET/VH_T, MET/m_{eff} with m_{eff} = MET + Σp_T^{jets}

15 signal regions, from 2 to 6 jets.

4 control regions per signal region:

- γ +jets with " γ = MET" (Z->vv + jets)
- QCD: smear low-MET multi-jet data
- W(->lv) + jets

ℓ+jets+MET, <mark>b-veto</mark>

• tt̄ -> bb̄qq'lv

or **b-tag**, "ℓ=τ_{had}"

Background normalization fitted across the 4 control regions.

Use MC-based transfer factors to predict background in signal region.

0 lepton + 2-6 jets + MET

0 lepton + 2-6 jets + MET

Metastable gluinos

ATLAS-CONF-2014-037

Metastable $\tilde{g} = \text{decay within detector with displaced}$ vertex. Expected in "mini-split SUSY" for $m_{\tilde{g}} \sim \text{TeV}$, when $m_0 \sim 10^3 \cdot 10^5 \text{ TeV} (m_{Higgs}, \text{ coupling unification}).$

Free parameters: gluino mass and lifetime, LSP mass. Investigate 2 scenarios for gluino decay:

$$\tilde{g} \to q\bar{q}\tilde{\chi}_1^0 / g\tilde{\chi}_1^0$$

 $\tilde{g} \to t\bar{t}\tilde{\chi}_1^0$

Signal MC: Pythia6 for gluino production, hadronization and decay within R-hadron; dedicated Geant4 routine.

Re-interpretation of two 0-lepton searches:

- 2-6 jets provides most sensitivity
- 7-10 jets (0, 1, ≥2 b-jets) important when g̃ decays via tops, since large jet multiplicity. For small lifetimes, gluino decay products identified as b-jets.

Metastable gluinos

τ_(had) + jets + MET

<u>1407.0603</u> sub. to JHEP

τ + jets + MET

For $\tau + \ell$, single-lepton trigger $\geq 1 \text{ loose } \tau$, $p_{\tau} > 20 \text{ GeV}$ m_{τ}^{ℓ} , 4 signal regions { m_{eff} , MET, N_{iet} }

Data-driven multi-jet background:

- ABCD method for 1τ
- jet smearing for 2τ
- matrix method for $\tau + \ell$

Main background uncertainty:

- differences between generators

- jet energy scale (large multiplicities)

Combination: pick signal region with best expected sensitivity for each channel.

τ + jets + MET

11

0-1 lepton, \geq 3 b-jets + MET

<u>1407.0600</u> sub. to JHEP

2 channels, with \ge 3 b-jets:

- 0 lepton, ≥ 4 or 7 jets
- ≥ 1 lepton, ≥ 6 jets

Search for **sbottom** or **stop/top** in gluino decay.

For fake b-jets, 0-lepton: semi-leptonic $t\overline{t}$ 1-lepton: di-lepton $t\overline{t}$ with τ_{had} (high m_T cut)

- fraction of real / fakes: matrix method
- fakes composition (τ_{had} , c- and light-jets): $t\overline{t}$ MC
- fake efficiencies from data

0-1 lepton, \geq 3 b-jets + MET

13

Prospects for √s=14 TeV

10

 10^{5}

 10^{3}

 10^{1}

 10^{-}

 10^{-3}

 10^{-5}

Cross Section [pb]

Beenakker, W. et al, Nucl. Phys. B515, 3-14 (1998)

Followed prescriptions in 1206.2892 [hep-ph]

Beenakker, W. et al, Int.J.Mod.Phys. A26, 2637-2664 (2011

ATL-PHYS-PUB

 $\sqrt{s} = 8 \text{ TeV}$

 $pp \rightarrow \tilde{g}\tilde{g}$

 $pp \to \tilde{q}\tilde{q}$ $pp \to \tilde{t}_1\tilde{t}_1$

 $\alpha_{\rm s} + {\rm scale} + {\rm PDF}$

-2014-010

8 TeV cross section

LHC 2015-2022: 300 fb⁻¹ at 14 TeV, <µ> ~60 **HL-LHC 2025-2032**: 3000 fb⁻¹ at 14 TeV, <µ> ~140

Studies at truth level, based on parameterized detector response at high pile-up.

Signal regions re-optimized.

Exclusion/discovery sensitivity using significance which includes background uncertainty (10 %).

Prospects for √s=14 TeV

14

 $m_{\widetilde{\chi}_1^0} \, [\text{GeV}]$

Summary

ATLAS has a rich program of inclusive searches for squarks and gluinos.

So far, no hint for a signal in data.

Limits have been significantly improved compared with 7 TeV analyses.

Now we have to prepare for whatever comes out of LHC Run-II data.

A St	TLAS SUSY Se atus: ICHEP 2014	earches	s* - 9	5%		ower Limits	ATL	ATLAS Preliminary $\sqrt{s} = 7, 8 \text{ TeV}$	
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fh	Mass limit		Reference	
Inclusive Searches	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}q, \overline{q} - qq^{2} r_{1}^{2} \\ \overline{z}, \overline{z}, \overline{z} - qq^{2} \\ \overline{z}, \overline{z}, \overline{z}, \overline{z} - qq^{2} \\ \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z} \\ \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z}, \overline{z} \\ \overline{z}, \overline{z},$	$\begin{array}{c} 0 \\ 1e,\mu \\ 0 \\ 0 \\ 1e,\mu \\ 2e,\mu \\ 2e,\mu \\ 1{-}2\tau + 0{-}1\ell \\ 2\gamma \\ 1e,\mu + \gamma \\ \gamma \\ 2e,\mu \left(Z\right) \\ 0 \end{array}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-je	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.3 20.3 20.3 4.8 4.8 5.8 10.5	4-1 12 TeV 12 Te	m(d)=m(d) array m(d) array m(d) m(f)=0 GeV m(f)=0 FeV m(f)=0 FeV	1405.7875 TLAS-CONF-2013-062 1306.18141 1405.7875 1405.7875 TLAS-CONF-2013-069 1205.4688 1407.6030 TLAS-CONF-2013-014 1211.162 CONF-2012-144 1211.162 TLAS-CONF-2012-147	
3 ^{v d} gen. <u>Ř</u> meď.	$\overline{\tilde{s}} \rightarrow b \overline{b} \overline{\tilde{s}}^{0}_{1}$ $\overline{\tilde{s}} \rightarrow t \overline{t} \overline{t}^{0}_{1}$ $\overline{\tilde{s}} \rightarrow t \overline{t} \overline{t}^{0}_{1}$ $\overline{\tilde{s}} \rightarrow b \overline{t} \overline{t}^{1}_{1}$	0 0 0-1 e,µ 0-1 e,µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 1.25 TeV 2 1.1 TeV 2 1.3 TeV 2 1.3 TeV 2 1.3 TeV	$\begin{array}{l} m(\tilde{t}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{t}_{1}^{0}){<}350\text{GeV} \\ m(\tilde{t}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{t}_{1}^{0}){<}300\text{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600	

Now

8 TeV SUSY searches not covered here

Light stop search via $\sigma_{t\bar{t}}$

<u>1406.5375</u> sub. to EPJC

Target at scenario where a **stop quark slightly heavier than top quark**.

$$\tilde{t}_1 \to t \tilde{\chi}_1^0$$
 , $1 \text{ GeV} < m_{\tilde{\chi}_1^0} < m_{\tilde{t}_1} - m_t$

Stop pairs would result in same final state as $t\bar{t}$, with slightly higher MET. Could be seen as an excess in measured $\sigma_{t\bar{t}}$.

Analysis based on events with $e\mu + 1/2 b$ -jets, using $\sqrt{s}=7$ TeV and 8 TeV datasets.

Fit signal strength parameter μ :

 $N_{\text{data}} = \mathcal{L} \times \left(\varepsilon_{t\bar{t}} \,\sigma_{t\bar{t}} + \mu \times \varepsilon_{\tilde{t}_1\bar{\tilde{t}}_1} \,\sigma_{\tilde{t}_1\bar{\tilde{t}}_1} \right)$

Exclude stop in range [$m_{\tilde{t}}$ +1 GeV, 177 GeV] assuming top from stop ~ fully right-handed.

Small dependence on LSP mass and top polarization.

O lepton + mono-jet/c-jets + MET ^{1407.0608} sub. to PRD

10

0.5

Leading jet log(P_c / P_b)

Data / SM

c-tag selection:

≥ 4 jets with $p_T > 30$ GeV, $\Delta \phi$ (jet,MET) > 0.4 b-jet veto, ≥1 sub-leading jet c-tagged 2 signal regions, $p_T^{jet} > 290$ GeV, increasing MET

0 lepton + mono-jet/c-jets + MET

