

SEARCH FOR NEW PHYSICS WITH TOP QUARKS IN ATLAS AT 8 TEV $- t\bar{b}, t\bar{t}, VLQ -$

D. Calvet on behalf of the ATLAS Collaboration

Laboratoire de Physique Corpusculaire de Clermont-Ferrand

PANIC2014, Hamburg, August 28th, 2014

Motivation

- Standard Model well confirmed by LHC, but...
- Many possible extensions of the SM* (GUT, extra-dimension(s), Little Higgs...)
- Predict new particles, usually coupled preferentially to top quark (heaviest particle so far):

$$W'
ightarrow tar{b}$$

$$g_{KK}/Z'
ightarrow tar{t}$$

■ new coloured fermions: Vector-Like Quarks (VLQ)

*Here, only non-SUSY BSM physics is considered < -> < -> < => < => < => < => < <> <<

Vector-like quarks

Next slides are about...

2 $g_{KK}/Z' \rightarrow t\bar{t}$

W boson of Standard Model couples only to left-handed fermions

 \Rightarrow search for new *W* boson coupling to **right-handed** fermions (W'_R)

• Other models predict a **heavier partner** of the SM W \Rightarrow search for W'_I

Couplings not known, but g_{uW'd}/g_{tW'b} assumed like SM
 Only two different final states

$W \rightarrow$	Analysis	\mathcal{L} [fb ⁻¹]
$\ell \nu$	ATLAS-CONF-2013-050	14
qq'	arXiv:1408.0886 [hep-ex] (EPJC)	20

- Target: $W' \to t (\to q \bar{q}' b) \bar{b}$ in the range [1.5,3] TeV
- Decay of **boosted** top \Rightarrow use of **large**-*R* jets
- Main backgrounds: multijets (from data), $t\bar{t}$ (from MC)
- Unbinned fit of *m_{tb}* spectrum

$W' \rightarrow t\bar{b}$	$g_{KK}/Z' ightarrow tar{t}$	Vector-like quarks 000000000000	
Full hadronic analysis			
Event selection	on		

- Calorimeter trigger ($\sum E_T > 700 \text{ GeV}$)
- \blacksquare Veto on high quality e or μ
- Jets (*p*_T > 350 GeV):
 - exactly one small-R (0.4) b-tagged \Rightarrow **b**
 - exactly one large-R (1.0) **top-tagged** \Rightarrow **t**
 - $\Delta R_{tb} > 2.0^{\dagger}$
- Two channels:
 - one *b*-tag (no additional *b*-tagged jet)
 - background: 99% multijet
 - **two** *b*-**tag** (one additional small-*R b*-tagged jet inside top-tagged jet)
 - background: 88% multijet, 11% tt

$$^{\dagger}\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$$

 $W' \rightarrow t\bar{b}$ 000000000 $g_{KK}/Z' \rightarrow$

Vector-like quarks

Summary 00

Full hadronic analysis

m_{tb} spectra

Events above 4 TeV not considered in statistical interpretation

Vector-like quarks

Full hadronic analysis

Limits (95% C.L.) on cross sections

• Assuming $g'_{L/R} = g_{SM}$: $m_{W'_L} > 1.68$ TeV, $m_{W'_R} > 1.76$ TeV

$W' \to t\bar{b}$	$g_{KK}/Z' \rightarrow t\bar{t}$ 00	Vector-like quarks 000000000000	
Full hadronic analysis			
Generic limits			

For $g'_{L/R} > 2g_{SM}$, the width of the $W'_{L/R}$ becomes too large with respect to the experimental resolution

$W' \rightarrow t\bar{b}$	$g_{KK}/Z' \rightarrow t\bar{t}$	Vector-like quarks 000000000000	
Summary			
Left-handed	W'		

■ Assuming g'_L = g_{SM}: m_{W'_L} > 1.74 TeV (leptonic, to be updated)

A ►

$W' \rightarrow t\bar{b}$	$g_{KK}/Z' ightarrow tar{t}$ 00	Vector-like quarks 000000000000	
Summary			

Right-handed W'

■ Assuming g'_R = g_{SM}: m_{W'_R} > 1.84 TeV (leptonic, to be updated)

P

글 > 글 글 글

Vector-like quarks

Next slides are about...

2 $g_{KK}/Z' \rightarrow t\bar{t}$

Analysis overview

ATLAS-CONF-2013-052

- 14 fb⁻¹ of 8 TeV data
- Single lepton (e/μ) trigger (24 GeV)
- At least one *b*-tagged jet
- Two channels:
 - **resolved**: $\ell + \nu + 4$ small-*R* jets (χ^2 method for combinatorics reduction)
 - **boosted**: $\ell + \nu + 1$ small-*R* jet (leptonic top) + 1 high mass large-*R* jet (hadronic top)
- $t\bar{t}$ invariant mass spectrum compared to SM prediction

・ロト ・同ト ・ヨト ・ヨト ・クタマ

 $W' \rightarrow t\bar{b}$ 000000000

Results

- $m_{Z'} > 1.8$ TeV (narrow leptophobic)
- *m_{gKK}* > 2.0 TeV (Randall-Sundrum model)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vector-like quarks

Next slides are about...

- ▲母 ▶ ▲ ヨ ▶ ▲目目 - シ۹ №

Why searching for vector-like quarks ?

- Simple implementation of a fourth generation of quarks is now excluded
- VLQ still allowed by present data:
 - color-triplet spin-1/2 fermions ("quarks")
 - whose left- and right-handed components have same weak isospin ("vector-like")
- Predicted in various BSM models, including composite Higgs, can solve naturalness problem without SUSY

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Vector-like quarks production

Cross-section independent on flavour of Q

Cross-sections depend on electroweak coupling of B/T

ъ

Vector-like quarks decays

- Assuming coupling with third generation quarks only
- Several analyses to cover all possible decays

$T \rightarrow$	$B \rightarrow$	Analysis	\mathcal{L} [fb $^{-1}$]
Wb		ATLAS-CONF-2013-060	14
	Wt	ATLAS-CONF-2013-051	14
Ht		ATLAS-CONF-2013-018	14
	Hb		
Zt	Zb	ATLAS-CONF-2014-036	20

(日) (同) (三) (三)

Zb/t + X analysis		
$W^{*} \rightarrow tb \qquad \qquad g_{KK}/Z^{*} - c_{KK}/Z^{*} - c_{K$	tt Vector-like quarks 000000000000000000000000000000000000	OO Summary

- Target: $T \rightarrow Zt$ and $B \rightarrow Zb$ decays
- No assumption on T/B branching ratios
- Pair and single production
- Main backgrounds: Z + b, WZ, $t\bar{t} + Z$ (from MC)
- Comparison of distributions of discriminating variables between data and expected background

물 문 제 물 문 문 물 물

	$g_{KK}/Z' ightarrow tar{t}$ 00	Vector-like quarks	
Zb/t + X analysis			
· · · · · · · · · · · · · · · · · · ·			

Event selection

- Single e or μ trigger (24 GeV)
- At least e^+e^- or $\mu^+\mu^-$ with $|m_{\ell^+\ell^-} m_Z| < 10$ GeV, $p_T(\ell^+\ell^-) \ge 150$ GeV
- At least 2 central jets
- Two channels:
 - dilepton (exactly 2 leptons), at least 2 *b*-tagged jets
 - **trilepton** (at least 3 leptons), at least 1 *b*-tagged jet

22 / 32

- SU(2) singlet case $\Rightarrow m_B > 685 \text{ GeV}$
- SU(2) doublet case $\Rightarrow m_B > 755$ GeV

▲ 同 ▶ → ● 三

▲ Ξ ► Ξ Ξ < • ○ ○ ○</p>

- SU(2) singlet case $\Rightarrow m_B > 655 \text{ GeV}$
- SU(2) doublet case $\Rightarrow m_B > 735$ GeV

▲ 同 ▶ → ● 三

▶ ▲ I ▶ I I ♥ ♥ ♥ ♥ ♥ ♥ ♥

- Lower mass limits for any branching ratio combination
- Best sensitivity in lower-left corners where $BR(B \rightarrow Zb)=100\%$ and $BR(T \rightarrow Zt)=100\%$

ъ

At least 1 forward jet

글 🛌 글 🖂

 Sensitivity not sufficient to constrain electroweak couplings TWb and BZb

3 → 3 | 5 |

David Calvet PANIC2014 / ATLAS: tb, tt, VLQ

David Calvet PANIC2014 / ATLAS: tb, tt, VLQ

David Calvet PANIC2014 / ATLAS: tb, tt, VLQ

Vector-like quarks

Next slides are about...

2 $g_{KK}/Z' \rightarrow t\bar{t}$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シの()~

- Many ATLAS analyses searching for non-SUSY new bosons or new fermions with top quarks
- All results consistent with Standard Model so far
- Most recent on $W' \to t\bar{b} \to jets$ and $T/B \to Zt/b + X$:

• More results (leptonic $W' \to t\bar{b}$, $g_{KK}/Z' \to t\bar{t}$, other VLQ decay channels) to be released in the near future

・ロト ・同ト ・ヨト ・ヨト ・クタマ

	Summar
	00

Thank you for your attention

ъ

Additional slides

Full hadronic analysis: signal MC samples

- Models in MADGRAPH 5
- PYTHIA 8.165
- CTEQ6L1

Full hadronic analysis: event selection details

- All 8 TeV data (20.3 fb⁻¹), trigger: $\sum_{calo} E_T \ge 700$ GeV
- $\blacksquare \text{ No high quality } e \text{ or } \mu$
- Jets (anti- k_t):
 - small-*R* (0.4):
 - $\blacksquare~p_T>25$ GeV, $|\eta|<2.5$
 - $\sum_{jets} p_T > 850 \text{ GeV}$ (for trigger efficiency)
 - exactly one *b*-tagged with $p_T > 350 \text{ GeV} \Rightarrow b$
 - large-*R* (1.0):
 - $p_T > 350$ GeV, $|\eta| < 2.0$
 - exactly one **top-tagged** \Rightarrow *t*
 - $\Delta R_{tb} > 2.0$, $m_{tb} > 1.1$ TeV
- Two channels:
 - one *b*-tag (no additional *b*-tagged jet)
 - two *b*-tag (one additional small-*R b*-tagged jet with $\Delta R_{b_2t} < 1.0$)

Top-tagger

- Specifically optimised top-tagger for this analysis
- Cut optimisation done on 2 TeV signal samples and a high-p_T
 QCD multijet MC sample
- Splitting scale

 √d₁₂ = min(p_{T1}, p_{T2})ΔR₁₂
 splitting in two subjets
- Close to m_{top}/2 for top jets, close to 0 for light, b or gluon jets

・ロト ・同ト ・ヨト ・ヨト ・クタマ

Top-tagger: *N*-subjettiness

• τ_{ij} : close to 1 for *j*-subjet-like jets, close to 0 for *i*-subjet-like jets

3 k 3

-

N-subjettiness

Reclustering (with k_t) of the large-R jet with exactly N subjets

$$\tau_N = \frac{1}{d_0} \sum_k p_{Tk} \min(\delta R_{1k}, ..., \delta R_{Nk})$$

$$d_0 = \sum_k p_{Tk} R$$

- k: constituent of the jet, R: radius of original jet, δ_{ik}: distance between ith and kth constituents
- $\tau_{ij} = \tau_i / \tau_j$: close to 1 for *j*-subjet-like jets, close to 0 for *i*-subjet-like jets

・ロト ・同ト ・ヨト ・ヨト ・ション シック

Full hadronic analysis: function for signal

- (Gaussian×Gaussian error function)+Gaussian
- Interpolation of parameters between the generated mass points

-

Full hadronic analysis: function for background

• $\exp(\sum_{k=1}^{n} c_k m_{tb}^k)$, n=4 (one *b*-tag), 2 (two *b*-tag)

ъ

 $W' \rightarrow t \bar{b}$

Full hadronic analysis: *p*-values

Maximal local significance: 1.4σ

ъ

Leptonic analysis: BDT outputs

David Calvet

 $W' \rightarrow t \bar{b}$

Leptonic analysis: generic limits

-

 $t\overline{t}$ resonances

Resolved analysis

<ロ> <同> <同> < 同> < 同>

 $t\overline{t}$ resonances

Boosted analysis

▲□▶ ▲□▶ ▲ □▶

- ∢ ⊒ →

Production cross-section

- λ_T : related to coupling of *TWb* vertex ($V_{Tb} \approx \frac{\lambda_T v}{\sqrt{2}m_T}$)
- V_{Tb}: generalised CKM matrix element (*TWb* vertex)
- X_{Bb}: mixing between B and b (BZb vertex)

ъ

Branching ratios

X: charge +5/3, Y: charge -4/3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Zb/t + X: signal MC samples

Pair production:

- cross-sections from TOP++ v2.0 (NNLO)
- generated with PROTOS v2.2 + PYTHIA v6.421
- MSTW 2008 LO 68% CL
- decays to equal (1/3) branching ratios (reweighting)
- *SU*(2) singlet and doublet couplings compared: negligible effect
- [350, 850] GeV (step of 50 GeV), fast simulation, 400, 600 and 800 GeV with full simulation

A B + A B +

Zb/t + X: signal MC samples

■ Single production:

- cross-sections from
 - PROTOS: single vector-like multiplet at low energy
 - MADGRAPH v5: composite Higgs model from arXiv:1207.0830 for $T\bar{b}q$
- generated with PROTOS $(B\bar{b}q)$ and MADGRAPH $(T\bar{b}q)$
- **T** $\bar{b}q$ compared to parton-level PROTOS samples
- [400, 1050] GeV for *T b̄q*, [400, 1200] GeV for *B b̄q* (step of 50 GeV)
- fast simulation for $T\bar{b}q$, full simulation for $B\bar{b}q$

- 4 E 6 4 E 6

Zb/t + X: background MC samples

- Z+jets: SHERPA (CT10), cross-checks with ALPGEN+PYTHIA (CTEQ6L1); NNLO
- *VV*: SHERPA; NLO
- $t\bar{t} + V$: Madgraph+pythia; NLO
- $t\bar{t}$: powheg+pythia (CT10); Top++
- *Wt*, *t* (*s*-channel): MC@NLO+HERWIG; NLO
- *t* (*t*-channel): ACERMC+PYTHIA; NLO

Reconstruction of physics objects

Electrons:

- $E_T > 25$ GeV, $|\eta_{cluster}| < 2.47$
- Medium requirement for electrons in Z-peak
- Tight requirement for extra electron(s)
- Calorimeter isolation in cone with $\Delta R = 0.2$, track isolation with $\Delta R = 0.3$

Muons:

- $p_T > 25$ GeV, $|\eta| < 2.5$
- Track isolation in cone with $\Delta R = 10 \text{ GeV}/p_T^{\mu}$

Jets:

- Anti- k_t with R = 0.4
- Central jets with $p_T > 25$ GeV, $|\eta| < 2.5$
- \blacksquare Forward jets with $p_{T}>35$ GeV, $2.5<|\eta|<4.5$

A B + A B +

Zb/t + X: distributions for Z+2 central jets events

- ● ● ●

▲ 글 ▶ _ 글| 글

Zb/t + X: distributions for dilepton events

▲ 同 ▶ → ● 三

315

- < ≣ > .

Zb/t + X: distributions for dilepton events

With at least 2 *b*-tagged jets

ъ

Zb/t + X: distributions for dilepton events

With only 1 *b*-tagged jet (control regions)

 $H_T(jets) > 600 \text{ GeV}$

★ 글 ▶ _ 글 님

Zb/t + X: distributions for trilepton events

 $p_T(Z) > 150 \,\,{\rm GeV}$

ъ

Zb/t + X: distributions for trilepton events

With no *b*-tagged jet (control region)

ъ

- A - E - M

Backup

VLQ

Zb/t + X, pair production: expected generic limits

■ BR($B \rightarrow Wt$)+BR($B \rightarrow Hb$)+BR($B \rightarrow Zb$)=1 ■ BR($T \rightarrow Wb$)+BR($T \rightarrow Ht$)+BR($T \rightarrow Zt$)=1

ъ

Zb/t + X, pair production: generic limits

$T \rightarrow Ht$ analysis (ATLAS-CONF-2013-018)

• Lepton+jets, targets $T \to H(\to b\bar{b})t$ in $T\bar{T}$ production

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

$T \rightarrow Wb$ analysis (ATLAS-CONF-2013-060)

• Lepton+jets, targets $T \rightarrow Wb$ in $T\bar{T}$ production

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

Same-sign dilepton analysis (ATLAS-CONF-2013-051)

- Same-sign dilepton, targets $B \rightarrow Wt$ in $B\bar{B}$ production
- Also sensitive to $T \rightarrow Zt$, Ht in $T\overline{T}$ production

David Calvet

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●