Searches for direct pair production of third generation squarks with the ATLAS detector

G.Usai University of Texas at Arlington on behalf of the ATLAS collaboration

Outline

- introduction
- searches for direct production of top squark pairs
- searches for direct production of bottom squark pairs

all results shown and more are available at the ATLAS SUSY summary page

3rd generation searches

- Supersymmetry provides an extension of the Standard Model which can solve the hierarchy problem and provide a Dark Matter candidate.
- Theoretical argument of naturalness favour the third generation squark (stop and sbottom) to be light (<ITeV) strongly motivating these searches at LHC.
- For ATLAS searches of gluinos and first generation squarks see talk from Bertrand Martin.
- Summary of ATLAS searches for direct production of stop/sbottom using full 8TeV dataset are summarized here.

3rd generation squarks production and decay LHC SUSY WG page direct stop/sbottom production cross 10NLO(-NLL) $\sigma(pp \rightarrow SUSY)$ [pb] data section at the NLO+NLL order $\widetilde{\mathbf{q}}_{q=\{v\}}$ 8TeV LHC stop decay depends on the mass/L-R ĝĝ mixing parameters and masses/mixing 10 parameters of charginos and neutralinos \mathbf{fb}^{-1} 50 10^{-2} results are mostly interpreted with #events in simplified models where the rest of SUSY $\widetilde{\chi}^{+}\widetilde{\chi}^{-}$ 10^{-3} spectrum is decoupled and 100% BR is 10 mostly assumed. Few exceptions: pMSSM, 10-4 -GMSB model. 1000 200 300 400 500 700 800 900 600 $\Delta m = m(\tilde{t}_1) - m(\tilde{\chi}_1^0)$ SUSY sparticle mass [GeV] $m(\tilde{\chi}_1^0)$ arXiv:1407.0583 [GeV/c2] $m(\tilde{t}_1) < m(\tilde{\chi}_1^0)$ small Δm 100 medium Δm large Δm LEP $\rightarrow b + \hat{x}$ 0 m(W) 100 m(t) 200 300 $m(\tilde{t}_1)$ [GeV/c²] 4

0-lepton,6(2b-)jets+, ∉_T

specific signature of third generation

- targeting high and medium stop masses:
 - $\widetilde{t}_1 \rightarrow t \widetilde{\chi}^0$
 - $\widetilde{t}_{I} \rightarrow b\widetilde{\chi}^{+} \rightarrow bW^{(*)}\widetilde{\chi}^{0} m(\widetilde{\chi}^{+})=2m(\widetilde{\chi}^{0})$

Selections

many optimized signal regions with a common selectior of 2 b-jets, lepton veto, missing ET >150 GeV

- (4) resolved topology: ≥6 jets, hadronic top mass MET > 150/250/300/350 GeV
- (2) partially resolved (4/5 jets) heavy stop: \geq 2-reclustered jets ($\Delta R=1.2$), $m_{jet}^{\Delta R=08}$ MET > 325/400 GeV
- (2) =5 jets targeting $b\chi^+$ mode at lower Δm MET > 160/215 GeV

Accepted by JHEP

arXiv:1406.1122

h

0-lepton,6(2b-)jets+ €_T

Background control

- semi-leptonic ttbar with a misidentified lepton, Z(VV)+jets, W+jets: estimated with background enriched samples (CRs)
- ttbar+W/Z, single top,VV: estimated with MC

Accepted by JHEP arXiv:1406.1122

Results								
	SRA1	SRA2	SRA3	SRA4	SRB	SRC1	SRC2	SRC3
Observed events	11	4	5	4	2	59	30	15
Total SM	15.8 ± 1.9	4.1 ± 0.8	$4.1\pm\!0.9$	2.4 ± 0.7	2.4 ± 0.7	68 ± 7	34 ± 5	20.3 ± 3.0

 no significant excess over the expected background.

I-lepton, 4-jets (Ib-jet) and E_T

9

- sensitive to many different signal scenarios depending on the masses of $\tilde{\tau}_1, \tilde{\chi}^+, \tilde{\chi}^0$
- use either hard or soft lepton (MET trigger) that allow to reach low $\Delta m(\tilde{t}_1, \tilde{\chi}^0)$
- **b-tagged jet** used for selection and to build kinematic variables
- Large ($\Delta R=1$) jets are used for heavy stop.

Selection

- common: I isolated lepton,4 jets, I b-jet, large MET and m_T.
- 15 SR using many different kinematic variables, probing each decay mode.

arXiv:1407.0583

2 leptons, b-jets and E_T

11

 $m_{T2}(\vec{p}_T^{\alpha}, \vec{p}_T^{\beta}, \vec{p}_T^{miss}) = min_{\vec{q}_T^1 + \vec{q}_T^2 = \vec{p}_T^{miss}} \{max \left(m_T^2(\vec{p}_T^{\alpha}, \vec{q}_T^1), m_T^2(\vec{p}_T^{\beta}, \vec{q}_T^2) \right) \} \text{ 10}^{\text{5}}$

- large $\Delta m(\widetilde{t_1}, \widetilde{\chi}^0)$: $\widetilde{t} \rightarrow t \widetilde{\chi}_1^0$ using MVA with: $E_T^{miss}, m_{11}, m_{T2}, \Delta \varphi_{11}, \Delta \varphi_{1j}, \Delta \varphi_{1F_T}^{miss}$
- medium $\Delta m(\tilde{t}_1, \tilde{\chi}^0): \tilde{t} \to b \tilde{\chi}^+ \to b W^{(*)} \tilde{\chi}^0$ real W: leptonic MT2; virtual W: hadronic MT2
- background yield: ttbar,WW,Wt estimated with dedicated control regions

m, [GeV]

m₋ [GeV]

Z+b-jets and E_{T}

• $\tilde{t}_2 \rightarrow Z \tilde{t}_1 \rightarrow Z t \tilde{\chi}_1^0$

- heavier top squark state: t₂
- \tilde{t}_2 decay provide indirect sensitivity to stealth stop: $\Delta m(\tilde{t}_1, \tilde{\chi}^0) \approx m_t$
- Selection: \geq 2 leptons (IZ), \geq 3jet (Ibjet), large MET
- main SM backgrounds: fake leptons, ttbarV,tZ,VV

Eur. Phys. J. C (2014) 74:2883 arXiv:1403.5222

Direct production of bottom squark pairs

0 leptons 2b-jets and \not{E}_T

16

Fully hadronic final state search targeting:

- $\widetilde{b} \rightarrow b \widetilde{\chi}^0$
- Two signal regions optimized for large and small $\Delta m(\tilde{b}, \tilde{\chi}^0)$.
- main SM backgrounds, ttbar and Z/W+HF jets are estimated using dedicated data samples.

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [p_{\rm T}(v_1) - p_{\rm T}(v_2)]^2$$

JHEP 10 (2013) 189

arXiv:1308.2631

mono-jets and $\not E_T$

17

compressed spectra: $m_b \leq \Delta m(\widetilde{b}_1, \widetilde{\chi}^0) \leq m_W + m_b$

- $\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$
- help improve the limit of 0L in the region where b_1 and χ^0 are almost degenerate

```
monojet selection:
```

max 3 jets with $p_T \ge 30 \text{GeV}$;

```
MI: p_{T}(j_{1}) \ge 280 \text{ GeV}, \text{MET} \ge 220 \text{GeV}.
```


3b-jets, 0-llepton + \not{E}_{T}

search targeting both direct and gluino mediated production, the model considered here:

- $\widetilde{b} \rightarrow b \ \widetilde{\chi}_2^0 \rightarrow bh \ \widetilde{\chi}_1^0$ (h \rightarrow bbbar) $\widetilde{\chi}_2^0$: heavier neutralino state
- ≥ 4 jets, (≥3b-jets), lepton veto , large missing momentum.
- main SM backgrounds: ttbar+b/bbbar is estimated with MC, fake b-jets estimated with data driven techniques.

summary

- ATLAS has a comprehensive set of searches for third generation squarks. Few have been shown in this talk. No significan excess from SM expectation has been observed.
- searches extend limits from previous experiments, but still many gaps remain...

Looking forward

• to run-2. expected ATLAS reach at 14 TeV with increased luminosity:

• <u>ATL-PHYS-PUB-2014-010-</u> and <u>ATL-PHYS-PUB-2013-011</u>

• stay tunned...

Backup slides

one other summary plot

- No significant excess from SM expectations. Searches extend considerably the previous limits from LEP and Tevatron
- excluded $\tilde{t}_1 \tilde{\chi}_1^0$ massin the b $\tilde{\chi}_1^+$ mode ass plane for different assumptions on $\tilde{\chi}_1^+$ mass

fully hadronic final states

23

Table 11. Event yields in each signal region (SRA, SRB, and SRC) are compared to the background estimate from the profile likelihood fit. Statistical, detector, and theoretical systematic uncertainties are included; the total systematic uncertainty in the background estimate includes all correlations. For each signal region, the 95% CL upper limits on the expected (observed) visible cross sections σ_{vis} (exp) (σ_{vis} (obs)) and the expected (observed) event yields N_{exp}^{95} (N_{obs}^{95}) are summarized.

	SRA1	SRA2	SRA3	SRA4	SRB	SRC1	SRC2	SRC3
Observed events	11	4	5	4	2	59	30	15
Total SM	15.8 ± 1.9	4.1 ± 0.8	4.1 ± 0.9	2.4 ± 0.7	2.4 ± 0.7	68 ± 7	34 ± 5	20.3 ± 3.0
tī	10.6 ± 1.9	1.8 ± 0.5	1.1 ± 0.6	0.49 ± 0.34	0.10 + 0.14 - 0.10	32 ± 4	12.9 ± 2.0	6.7 ± 1.2
$t\bar{t}+W/Z$	1.8 ± 0.6	0.85 ± 0.29	0.82 ± 0.29	0.50 ± 0.17	0.47 ± 0.17	3.2 ± 0.8	1.9 ± 0.5	1.3 ± 0.4
Z + jets	1.4 ± 0.5	0.63 ± 0.22	1.2 ± 0.4	0.68 ± 0.27	1.23 ± 0.31	15.7 ± 3.5	9.0 ± 1.9	6.1 ± 1.3
W + jets	1.0 ± 0.5	0.46 ± 0.21	0.21 ± 0.19	$0.06 {}^{+0.10}_{-0.06}$	0.49 ± 0.33	8 ± 4	4.8 ± 2.2	2.8 ± 1.2
Single top	1.0 ± 0.4	0.30 ± 0.17	0.44 ± 0.14	0.31 ± 0.16	0.08 ± 0.06	7.2 ± 2.9	4.5 ± 1.8	2.9 ± 1.4
Diboson	< 0.4	< 0.13	0.32 ± 0.17	0.32 ± 0.18	0.02 ± 0.01	1.1 ± 0.8	$0.6 {}^{+0.7}_{-0.6}$	$0.6 {}^{+0.7}_{-0.6}$
Multijets	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.24 ± 0.24	0.06 ± 0.06	0.01 ± 0.01
$\sigma_{\rm vis}({\rm obs})$ [fb]	0.33	0.29	0.33	0.32	0.21	0.78	0.62	0.40
$\sigma_{\rm vis}(\exp)$ [fb]	$0.48 {}^{+ 0.21}_{- 0.14}$	$0.29 {}^{+ 0.13}_{- 0.09}$	$0.29 {}^{+ 0.14}_{- 0.09}$	$0.25 {}^{+ 0.13}_{- 0.07}$	$0.24 {}^{+ 0.13}_{- 0.06}$	$1.03 {}^{+ 0.42}_{- 0.29}$	$0.73 {}^{+ 0.31}_{- 0.21}$	$0.55^{+0.24}_{-0.15}$
$N_{\rm obs}^{95}$	6.6	5.7	6.7	6.5	4.2	15.7	12.4	8.0
$N_{\rm exp}^{95}$	$9.7^{+4.3}_{-3.0}$	$5.8^{+2.6}_{-1.8}$	$5.9^{+2.8}_{-1.9}$	$5.0^{+2.6}_{-1.4}$	$4.7^{+2.6}_{-1.2}$	$20.7^{+8.4}_{-5.8}$	$14.7^{+6.2}_{-4.2}$	$11.0^{+4.9}_{-3.1}$

Table 8. Normalization of the $t\bar{t}$, W + jets, and Z + jets SM background as obtained from the background fits for SRA, SRB and SRC.

Background Source	SRA	SRB	SRC	
tī	1.24 ± 0.13	$1.00\substack{+0.10 \\ -0.05}$	1.07 ± 0.11	
W + jets	-	1.0 ± 0.4	-	
Z + jets	$0.94\substack{+0.16 \\ -0.15}$	1.07 ± 0.07	1.07 ± 0.07	

arXiv:1407.0583

I-lepton,4-jets (Ib-jet) and \not{E}_T

Results

				Nnon-SM		$\sigma_{\rm vis}$ [fb]	
Region	Obs.	Exp. bkg.	p_0	Obs.	Exp.	Obs.	Exp.
tN_med	12	13.0 ± 2.2	≥ 0.5	8.5	9.2	0.4	0.5
tN_high	5	5.0 ± 1.0	≥ 0.5	6.0	6.0	0.3	0.3
tN_boost	5	3.3 ± 0.7	0.17	7.0	5.3	0.3	0.3
bCa_low	11	6.5 ± 1.4	0.08	12.2	7.8	0.61	0.92
bCa_med	20	17 ± 4	0.33	14.4	12.3	0.72	0.68
bCb_med1	41	32 ± 5	0.12	23.5	16.0	1.17	0.88
bCb_high	7	9.8 ± 1.6	≥ 0.5	6.5	7.9	0.32	0.22
bCc_diag	493	470 ± 50	0.27	110.6	95.1	5.4	4.7
bCd_high1	16	11.0 ± 1.5	0.09	13.2	8.5	0.7	0.4
bCd_high2	5	4.4 ± 0.8	0.36	6.3	5.7	0.3	0.3
tNbC_mix	10	7.2 ± 1.0	0.13	9.7	7.0	0.5	0.3
tN_diag							
$125 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}, \ 120 < m_{\rm T} < 140 \ {\rm GeV}$	117	136 ± 22	≥ 0.5	42.1	55.7	2.1	2.7
$125 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}, m_{\rm T} > 140 {\rm GeV}$	163	152 ± 20	0.35	55.4	47.8	2.7	2.4
$E_{\rm T}^{\rm miss} > 150 { m GeV}, \ 120 < m_{\rm T} < 140 \ { m GeV}$	101	98 ± 13	0.43	36.1	33.9	1.8	1.7
$E_{T}^{miss} > 150 \text{ GeV}, m_{T} > 140 \text{ GeV}$	217	236 ± 29	≥ 0.5	58.7	71.4	2.9	3.5
bCb_med2							
$175 < am_{T2} < 250 \text{GeV}, 90 < m_T < 120 \text{GeV}$	10	12.1 ± 2.0	≥ 0.5	7.3	8.8	0.4	0.4
$175 < am_{T2} < 250 \text{GeV}, \qquad m_T > 120 \text{GeV}$	10	7.4 ± 1.4	0.10	9.7	7.3	0.5	0.4
$am_{T2} > 250 \text{GeV}, 90 < m_T < 120 \text{GeV}$	16	21 ± 4	≥ 0.5	9.3	12.3	0.5	0.6
$am_{T2} > 250 \text{ GeV}, m_T > 120 \text{ GeV}$	9	9.1 ± 1.6	≥ 0.5	7.7	7.8	0.4	0.4
bCd_bulk							
$175 < am_{T2} < 250 \text{GeV}, 90 < m_T < 120 \text{GeV}$	144	133 ± 22	0.29	36.1	33.9	1.8	1.7
$175 < am_{T2} < 250 \text{GeV}, \qquad m_T > 120 \text{GeV}$	78	73 ± 8	0.34	58.7	71.4	2.9	3.5
$am_{T2} > 250 \text{GeV}, 90 < m_T < 120 \text{GeV}$	61	66 ± 6	≥ 0.5	17.5	20.9	0.9	1.0
$am_{T2} > 250 \text{ GeV}, m_T > 120 \text{ GeV}$	29	26.5 ± 2.6	0.34	14.8	12.6	0.7	0.6
3body		1					
$80 < am_{T2} < 90 \text{GeV}, 90 < m_T < 120 \text{GeV}$	12	16.9 ± 2.8	≥ 0.5	7.3	9.9	0.4	0.5
$80 < am_{T2} < 90 \text{GeV}, m_T > 120 \text{GeV}$	8	8.4 ± 2.2	≥ 0.5	7.9	7.8	0.4	0.4
$90 < am_{T2} < 100 \text{GeV}, 90 < m_T < 120 \text{GeV}$	29	35 ± 4	≥ 0.5	11.7	14.7	0.6	0.7
$90 < am_{T2} < 100 \text{GeV}, \qquad m_T > 120 \text{GeV}$	22	29 ± 5	≥ 0.5	55.4	47.8	2.7	2.4

I-lepton,4-jets (Ib-jet) and $\not E_T$

arXiv:1407.0583

use of shape fit techniques (on MET, mT, lepton pT variables) to estimate the exclusion limits

 \Rightarrow push the sensitivity toward the very challenging diagonal.

ttbar cross section measurements arXiv:1406.5375 reinterpretation

• By comparing precise measurements of ttbar cross section at $\sqrt{s} = 7$ and 8 TeV with QCD predictions, limits are placed on the pair-production of stop squarks with masses close to m_t decaying to mostly right-handed top quarks and a light neutralino

2SS, 3-leptons +jets and E_T arXiv:1404.2500 targeting many SUSY model, direct and gluino mediated production W p• $\widetilde{b} \rightarrow t \widetilde{\chi}_{I}^{+} \rightarrow t W^{(*)} \widetilde{\chi}_{I}^{0}$ with $m(\widetilde{\chi}_{1}^{+})=2m(\widetilde{\chi}_{1}^{0})$ \geq 3 jets, (\geq 1 b-jets), 2 SS or 3L, large missing momentum. \widetilde{b} , \widetilde{b} , production, \widetilde{b} , $\rightarrow t \widetilde{\chi}^{\pm}$, $m(\widetilde{\chi}^{\pm}) = 2 m(\widetilde{\chi}^{\pm})$ [A⊕ 9] °^k 350 main SM backgrounds:ttbar+V,VV ATLAS estimated with MC and fake . dt = 20.3 fb⁻¹, √s=8 TeV leptons, charge flips with data driven 2 same-charge leptons/3 leptons + jets techniques. Observed limit (±1 σ^{SUSY}_{theory}) 300 Expected limit (±1 σ_{exp}) 250 All limits at 95% CL 200 150 100 50 **3**00 350 400 450 500 550 600 650 700 m_{6.} [GeV] 27

