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(Anti-)(Hyper)nuclei production
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Statistical thermal model  
● Thermodynamic approach to particle production in 

heavy-ion collisions
● Abundances fixed at chemical freeze-out (Tchem)

(hyper)nuclei are very sensitive to Tchem because of 
their large mass (M)

● Exponential dependence of the yield    e(- m/Tchem)
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Coalescence
● If baryons at freeze-out are close enough in phase 

space an (anti-)(hyper)nucleus can be formed
● (Hyper)nuclei are formed by protons (Λ) and 

neutrons which have similar velocities after the 
kinetic freeze-out
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ALICE
ALICE particle identification capabilities are unique. Almost all known techniques are exploited: dE/dx, 
time-of-flight, transition radiation, Cherenkov radiation, calorimetry and topological decay (V0, 
cascade)

● Inner Tracking System (ITS)

 Primary vertex
 Tracking
 PID via dE/dx

● Time Projection Chamber (TPC)

 Global tracking
 PID via dE/dx

● Time Of Flight (TOF)

 PID via time-of-flight

● HMPID

 PID via ring imaging Cherenkov 
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ITS

TPC

TOF

HMPID
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Nuclei Identification

Low momenta

Nuclei identification via dE/dx measurement 
in the TPC:

● dE/dx resolution in central Pb-Pb 
collisions: 7% 

● Excellent separation of (anti-)nuclei from 
other particles over a wide range of 
momentum

ALI-PERF-51972 
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Nuclei Identification

Low momenta

Nuclei identification via dE/dx measurement 
in the TPC:

● dE/dx resolution in central Pb-Pb 
collisions: 7% 

● Excellent separation of (anti-)nuclei from 
other particles over a wide range of 
momentum

ALI-PERF-51972 

Higher momenta

Velocity measurement with the Time Of Flight 
detector is used to evaluate the m2 distribution.

● Excellent TOF performance: σTOF ≈ 85 ps in Pb-Pb 
collisions. 

● ±3σ-cut around expected TPC dE/dx for deuterons 
reduces drastically the background from TPC and 
TOF mismatch
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Low momenta
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Higher momenta

HMPID
● At higher momenta nuclei in central Pb-Pb collisions  

are identified based on Cherenkov radiation with 
HMPID

cosθCherenkov=
1
nβ

m2=p2(n2 cos2θCherenkov−1)
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H Identification

2 < p
T
 < 10 GeV/c

(3He,π-)+ (3He,π+) Invariant Mass spectrum

 = 2.992 ± 0.002 GeV/c2

 = (2.08 ± 0.50)x10-3 GeV/c2

(3

H) 3


H is the lightest known hypernucleus and is formed by (p,n,).

Mass = 2.991 GeV/c2 Lifetime ~ 263 psB

 = 0.13 ± 0.05 MeV 

APPLIED CUTS:
● Cos(Pointing Angle) > 0.99
● DCA π to PV > 0.4 cm
● DCA between tracks < 0.7 cm
● (3He,π) p

T
> 2 GeV/c

● |y| ≤ 1
● cτ > 1 cm

3

H → 3He + π- 

3

H → 3He+ π+
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Nuclei Results

Results
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Deuterons and 3He in Pb – Pb

Blast-Wave model: E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)

6

● Spectra are extracted in different centrality bins and fitted with a Blast-Wave 
function (simplified hydro model) for the extraction of yields (extrapolation to 
unmeasured region at low and high pT)
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Deuterons and 3He in Pb – Pb

Blast-Wave model: E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)

6

● Spectra are extracted in different centrality bins and fitted with a Blast-Wave 
function (simplified hydro model) for the extraction of yields (extrapolation to 
unmeasured region at low and high pT)

● A hardening of the spectrum with increasing centrality is observed as expected 
in a hydrodynamic description of the fireball as a radially expanding source
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(Anti-)deuterons in p – Pb

● Deuteron and anti-deuteron spectra extracted in different multiplicity bins 
and fitted with Blast-Wave functions for the extraction of yields
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(Anti-)deuterons in p – Pb

● Deuteron and anti-deuteron spectra extracted in different multiplicity bins 
and fitted with Blast-Wave functions for the extraction of yields

● Also in p-Pb collisions spectra become harder with increasing multiplicity
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Deuteron to proton ratio
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Deuteron to proton ratio

● Rise with multiplicity in p-Pb

● No significant centrality 
dependence in Pb-Pb 

● Ratio in pp collisions is a 
factor 2.5 lower than in Pb-Pb 
collisions
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Deuterons B2

Within a coalescence approach, the formation probability 
of deuterons can be quantified through the  parameter B2

B2=

E d
d 3 N d

dpd
3

(E p

d3N p

dp p
3 )

2

ALI-DER-57267 
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Deuterons B2

First order prediction of coalescence model: 
● Flat B2 vs pT   and no dependence on 

multiplicity/centrality
✔ Observed in p-Pb and peripheral Pb-Pb

Second order prediction of coalescence model:
● B2 scales like HBT radii

➢ decrease with centrality in Pb-Pb is explained as 
an increase in the source volume

➢ increasing with pT in central Pb-Pb reflects the 
kT-dependence of the homogeneity volume in 
HBT
✔ Observed in central Pb-Pb collisions
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H dN/dy

Yield extracted in two centrality bins
dN/dy in good agreement with thermal 

model prediction from Andronic et al. for 
Tchem = 156 MeV M. Petráň et al., Phys. Rev. C 88, 034907 (2013)

A. Andronic et al., Phys. Lett. B 697, 203 (2011)
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3

H Lifetime determination

Direct decay time measurement is difficult 
(~ps), but the excellent determination of 

primary and decay vertex allows measurement 
of lifetime via:

N (t )=N (0)exp(− L
βγ c τ )

Where c = mL/p (cm)
With  m the hypertriton mass, L the decay length 
and p the total momentum

c= (5.5 ±1.4 ±0.68) cm

= 185 ± 48 ± 29 ps

11

c = (5.5 ±1.4 ±0.68) cm
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Thermal model fit to ALICE data

The pT-integrated yields and ratios 
can be interpreted in terms of 

statistical (thermal) models

Particle yields of light flavor 
hadrons (including nuclei) are 

described with a common 
chemical freeze-out temperature 

(Tchem= 156 ± 2 MeV)

12

GSI-Heidelberg
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Nuclei in Pb – Pb 

Thermal model prediction:
  

● Nuclei follow nicely the exponential 
fall predicted by the model

● Each added baryon gives a factor of  
~300 less production yield

dN
dy

∝exp(−
m

T chem

)

13

p

d

p

3He

4He
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Searches for weakly decaying exotic bound 
states

● H-Dibaryon : Hypothetical bound state of 
uuddss (ΛΛ) first predicted by Jaffe in a bag 
model calculation.

R.L. Jaffe, Phys. Rev. Lett. 38, 195 (1977), erratum ibid 38, 617 (1977)

● Bound state of Λn ?
● HypHI experiment at GSI sees evidence of a 

new state: Λn  → d+ -

C. Rappold et al. (HypHI collaboration), Phys. Rev. C88, 041001(R) (2013)



28/08/2014 Ramona Lea

H-Dibaryon and ΛN bound state 

No signal visible →  upper limits

Expected Λn bound states signal in (Λn → dπ-) 
(thermal model prediction)

No signal visible →  upper limit
dN/dy ≤ 1.5x10-3 (99% CL)

Expected strongly bound and lightly bound 
H-Dibaryon signal (thermal model prediction)

For a lightly bound H:
dN/dy  ≤ 2x10-4 (99% CL)

For a strongly bound H: 
dN/dy  ≤ 8.4x10-4 (99% CL)

15
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Comparison to different models

● The upper limits for exotica are lower than 
the thermal model expectation by a factor 10

● Thermal model with the same temperature 
describe precisely the production yield of  
deuterons , 3He and 3

H

→ At least factor 10 between models 
and estimated upper limit

→ The existence of such states with 
the assumed B.R., mass and lifetime is  
questionable

16
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Conclusions

● Excellent ALICE performance allows detection of light (anti-)nuclei, (anti-)hypernuclei and 
other exotic bound states

● A hardening of the spectrum with increasing centrality is observed both in Pb-Pb and p-Pb 
collisions 

● The d/p ratio rises with multiplicity in p-Pb collisions, while no significant centrality 
dependence is observed in Pb-Pb collisions

● Coalescence parameter B2 is  independent from pT in p-Pb and peripheral Pb-Pb collisions, 
while it increases with pT in central Pb-Pb collisions. A decrease with centrality is also 
observed in Pb-Pb collisions 

● The measured 3
H lifetime (185 ± 48 ± 29 ps) is consistent with previous measurements 

● Measured deuteron, 3He, hypertriton and anti-alpha yields are in agreement with the 
current best thermal fit from equilibrium thermal model (Tchem = 156 MeV)

● H-Dibaryon and Λn search in Pb-Pb with ALICE: no visible signal → Upper limits are at least 
an order of magnitude lower than predictions of several models 

17
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BACKUP
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Centrality in Pb – Pb

Centrality = degree of overlap of the 2 colliding nuclei

Central  collisions:
● small impact parameter b
● high number of participant nucleons →  high multiplicity

Peripheral collisions:
● large impact parameter b
● low number of participant nucleons →  low multiplicity

Geometrical picture of AA collisions 
with the Glauber model:

● Random relative position of nuclei in 
transverse plane Woods-Saxon 
distribution of nucleons inside 
nucleus

● Straight-line nucleon trajectories 
● N-N cross-section (NN = 64 ± 5 mb) 

independent of the number of 
collisions the nucleons suffered 
before

18
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Centrality in p – Pb

Multiplicity estimator: slices in VZERO-A (V0A) amplitude

Correlation between impact
parameter and multiplicity is

not as straight-forward as in Pb-Pb

p Pb

Central collision

p
Pb

Peripheral collision

19
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Rapidity definition in p – Pb

Asymmetric energy/nucleon in the two beams → CMS moves with rapidity |ΔyCMS| = 0.465

20

A-side

C-side

p

Pb

yLAB = 0 

yCMS = 0 
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Efficiency Correction

21
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Nuclei Identification : Secondaries

Nuclei from knock-out reactions 
constitute a large background at low 
momenta in all nuclei measurements.
Knock-out reactions are not relevant for 
anti-nuclei secondaries

Rejection is possible restricting DCAZ 
and fitting the DCAXY  distribution with 
MC templates

22
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Absorption Correction

For the anti-deuteron spectra an additional correction is
necessary due to the absorption

23
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H-Dibaryon

Two cases:
➢ m

H
< ΛΛ threshold

● weakly bound: 
measurable channel 

H →  Λpπ 
● 2.2 GeV/c2 < m

H
 < 2.231 GeV/c2

• m
H
>ΛΛ threshold

● resonant state: 
measurable channel 

H → ΛΛ 
● m

H
 > 2.231 GeV/c2

p





H0

p
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H-Dibaryon and ΛN bound state 

 lightly bound:  
2110 x 0.64 = 1350

N =  3.1 ∙ 10-3 x 2 x 1.38 ∙ 107 x 0.0385 x 0.64 = 2110
events Eff. BR(Λ)dN/dy y

strongly bound:  
2110 x 0.1 = 211

Expected Λn bound states yield at the LHC in (Λn → dπ-) (Thermal model prediction):

Expected H-Dibaryon  yield at the LHC (thermal model prediction):

25

N =  1.6 ∙ 10-2 x 2 x 1.38 ∙ 107 x 0.0255 x 0.35 = 4000

events Eff. BR(Λn)dN/dy y

Jürgen Schaffner-Bielich et al., PRL 84, 4305 (2000)

Jürgen Schaffner-Bielich, private communication
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Coalescence Model and HBT
The size of the emitting volume (Veff) has to be taken into account: the larger the distance between 
the protons and neutrons which are created in the collision, the less likely is that they coalesce

In detail, it turns out [1] that the coalescence process is governed by the same “length of 
homogeneity in the source” which can be extracted from two particle Bose-Einstein correlation 
(HanburyBrown – Twiss (HBT) interferometry [2]):  → B2 ~ 1/Veff 

The strong decrease of B2 with centrality in Pb-Pb collisions can be naturally explained as an 
increase in the emitting volume: particle densities are relevant and not absolute multiplicities

[1]R. Scheibl and U. Heinz, Phys.Rev. C59, 1585  (1999)
[2]A review can be found in :  U. Heinz, Nucl. Phys. A 610 , 264c (1996)

(small fireball) (large fireball)

B2=
3 π

3 /2
⟨Cd ⟩

2mt ℜT
2
(mt)ℜp

2
(mt)

e
2(mt −m)( 1

T∗ p
−

1
T∗ d )
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