Elastic Electron and Muon Scattering Experiment Off the Proton at PSI

- 1. The proton-radius puzzle
- 2. The contribution of the **MUSE experiment** to a solution
- 3. Example simulation results addressing some challenges of the experiment

Steffen Strauch for the MUSE Collaboration University of South Carolina

Supported in parts by the U.S. National Science Foundation: NSF PHY-1205782.

Particles and Nuclei International Conference (PANIC 14), August 25–29, 2014, Hamburg, Germany

Nucleon form factors from ep cross sections

Cross section for ep scattering (one photon exchange)

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{\tau}{\epsilon(1+\tau)} \left[\begin{array}{c} G_M^2 + \frac{\epsilon}{\tau} G_E^2 \\ \text{reduced cross section} \end{array} \right]$$
Definition of proton charge radius
$$\left(\langle r_p^2 \rangle = -6\hbar^2 \frac{dG_E(Q^2)}{dQ^2} \Big|_{Q^2=0} \right)$$

 $(r_p \text{ is not related to integral over proton charge density})$ [G. Miller]

Determine r_p from the slope of $G_E(Q^2)$ at $Q^2 \rightarrow 0$. Higher order terms come in early.

 $r_{\rm p} = 0.879(8) \, {\rm fm}$

C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Progress in Particle and Nuclear Physics 59 (2007) 694-764. Value of rp from J. Bernauer et al. PRL 105, 242001 (2010). 2

Spectroscopy of muonic hydrogen

 μ beam stopped in H₂ gas

Determine r_p from spectroscopic data and QED calculations

R. Pohl et al., Nature 466, 213 (2010), A. Antognini et al., Science 339, 417 (2013); Fig. adapted from Pohl, Miller, Gilman, Pachucki, arXiv:1301.0950v1 3

The proton radius puzzle: Muonic and electronic measurements give different proton radii

The discrepancy between muonic and electronic measurements of the **proton** charge radius is a 7σ effect; electronic and muonic measurements on D and He seem to agree.

I. Sick, PLB 576, 62 (2003); P.J. Mohr et al., Rev. Mod. Phys. 80, 633 (2008); J.C Bernauer et al., PRL 105, 242001 (2010); R. Pohl et al., Nature 466, 213 (2010); X. Zhan et al., PLB 705, 59 (2011); P.J. Mohr et al., Rev. Mod. Phys. 84, 1527 (2012); A. Antognini et al., Science 339, 417 (2013)

"This discrepancy has triggered a lively discussion..." Aldo Antognini et al., Science 339, 417 (2013)

Possible explanations of the proton-radius puzzle

- Beyond Standard Model Physics: Violation of μ – e universality
- Novel Hadronic Physics:

Strong-interaction effect entering in a loop diagram is important for μp but not for ep; e.g. proton <u>polarizability</u> (effect $\propto m_1^4$), <u>off-shell</u> corrections, <u>two-photon</u> protonstructure corrections.

• Electron scattering & atomic hydrogen data and radius extraction not as accurate as previously reported.

New experiments are planned or underway to address the issue

R. Pohl, R. Gilman, G.A. Miller, K. Pachucki, "Muonic hydrogen and the proton radius puzzle", arXiv:1301.0905 (2013).
G.A. Miler, Phys. Lett. B 718, 1078 (2013), G.A. Miller, A.W. Thomas, J.D. Carroll, J. Rafelski Phys. Rev. A 84, 020101 (2011).
C.E. Carlson, M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).

MUon Scattering Experiment (MUSE) at PSI

Important data for proton radius puzzle missing ...

r	ер	μр
spectroscopy	0.876(8)	0.8409(4)
scattering	0.877(6)	?

Ref.: CODATA2010 for H and D spectroscopy, Antognini et al. (2013) for muonic atom, average of Bernauer et al. (2010) and Zahn et al. (2011) for electron scattering.

Direct test of μp and ep interactions in a scattering experiment:

- higher precision than previously,
- low Q² region for sensitivity to the proton radius,
 Q² = 0.002 to 0.07 GeV²,
- with μ^+,μ^- and e^+,e^- to study possible 2γ mechanisms,
- with μp and ep to have direct μ/e comparison

MUSE

$$e^{-}p \rightarrow e^{-}p$$
$$e^{+}p \rightarrow e^{+}p$$
$$\mu^{-}p \rightarrow \mu^{-}p$$
$$\mu^{+}p \rightarrow \mu^{+}p$$

The MUon Scattering Experiment at PSI (MUSE), R. Gilman, E. Downie, G. Ron, spokespeople. MUSE White Paper, arXiv 1303.2160 (2013).

MUSE Experimental setup

Measure e^{\pm} and μ^{\pm} elastic scattering off a liquid hydrogen target.

p = 115, 153, 210 MeV/c θ = 20° to 100° Q² = 0.002 - 0.07 GeV² ϵ = 0.256 - 0.94

Challenges:

- Secondary beam with π background,
- non-magnetic spectrometer,
- background from Møller scattering and muon decay in flight.

The MUon Scattering Experiment at PSI (MUSE), R. Gilman, E. Downie, G. Ron, spokespeople. MUSE White Paper, arXiv 1303.2160 (2013).

The challenges of a muon beam, particle ID

PSI $\pi M1$ beam line

Scintillating Fiber arrays determine time of flight for particle ID 50 MHz RF (20 ns bunch separation) Flux ≈ 5 MHz,

e, μ , π beams with large emittance

p = 115, 158, 210 MeV/c

Positive polarity particle fractions determined in June 2013 beam test (K. Mesick)

Measuring the incident particle trajectory

GEM chambers (Hampton) and scintillating fiber arrays (Tel Aviv) to track individual beam particles into the target.

Veto detector (UofSC) reduces trigger rate from background events.

Geant4 Simulation, w/o veto

Geant4 Simulation, with veto

Scattered particle detectors

Each side of the beam line symmetrically equipped.

Straw Tube Tracker (HUJI + Temple)

Two chambers; 3000 straws total PANDA design Determine scattered particle trajectory to 140 μm

Time-of-Flight Scintillators (UofSC)

Two planes; 90 bars total FTOF12 for CLAS12 design Time resolution better than 60 ps

Møller scattering background

Signatures

- Scattered Møller electron forward peaked
- Scattered electron has low momentum
- Forward going highmomentum beam electron

Suppression

- Directional cut on
 scintillator wall bar combination
- Beam-monitor scintillator
 as Møller veto

Møller scattering background efficiently suppressed with veto from beam-line monitor

simulation determines detection threshold, which is an input to the calculations of radiative corrections

$$\mu^- \rightarrow e^- + \overline{V}_e + V_\mu$$

Suppression of background from muon decay

- Target vertex cut
- Time of flight

Vertex-time difference from path lengths and measured times

assuming electron after muon decay, $\beta_e = 1$

 $\Delta t \approx 0$, for muon decay in target

Direct measurement of the muon decay in flight background

Muon decay distribution measured

20 mm

40 mm

upstream & downstream of the target.

14

20 mm

Projected MUSE results (preliminary)

Total relative uncertainty in the cross section

 $\Delta \sigma(\mu) / \sigma = 0.4\%$ $\Delta \sigma(e) / \sigma = 0.6\%$

Sensitivity to differences in extracted e/μ radii:

 $\sigma^{\text{MUSE}}(r_e - r_\mu) \approx 0.009 \text{ fm}$

Current discrepancy:

$$r_e - r_\mu \approx 0.035 \text{ fm}$$

Projected radius results including only **relative** uncertainties

Comparisons of, e.g., e to μ or of μ^+ to μ^- are insensitive to many of the systematics

- Proton radius puzzle: The discrepancy between muonic and electronic measurements of the proton radius is a 7σ effect.
- MUSE scattering experiments off the proton try to solve the puzzle:
 - $\mu^{\pm}p$ and $e^{\pm}p$ scattering directly tests interesting possibilities:

Are μp and ep interactions different? If so, does it arise from 2γ exchange effects ($\mu^+ \neq \mu^-$) or beyond the standard model physics ($\mu^+ \approx \mu^- \neq e^-$)?

- Detailed simulations underway to help optimize the detector setup and to study the feasibility of the experiment.
- R&D work underway, funded by the U.S. NSF & DOE; planning for production running in 2017–2018.