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Motivation

Understanding the QCD phase structure is one of the most important

challenges in the physics of strong interactions

The very first QCD phase di-

agram taken from Cabibbo-

Parisi (1975)

− N. Cabibbo, G. Parisi, PLB 59 (1975) 67

A schematic outline for the

phase diagram of matter at ul-

trahigh density and tempera-

ture
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Motivation

Understanding the QCD phase structure is one of the most important

challenges in the physics of strong interactions

Theoretical approach:

Effective model calculations

Lattice calculations
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Experimental approach:

Map the QCD phase boundary

Localization of the CEP
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Motivation

Deconfinement and chiral restoration in an external magnetic field:

Important for:

Physics of magnetars: (B ∼ 1018−20 G in the interior?)1;

Measurements in heavy ion collisions at very high energies;

RHIC energy scale: eBmax ≈ 5 × 1018 G (5 × m2
π)2

LHC energy scale: eBmax ≈ 5 × 1019 G (15 × m2
π)2

Early stages of the universe.

1− E. J. Ferrer, et al., PRC 82 (2010) 065802

2− V. V. Skokov, et al., IJMPA 24 (2009) 5925 P. Costa− PANIC 14, 25-29 August 2014 – p. 5/34



Motivation

QCD → two phase transitions

restoration of chiral symmetry
order parameters: quark condensates

〈qi qi〉

{

6= 0 ⇔ symmetry broken, T < Tc

= 0 ⇔ symmetry restored, T > Tc

deconfinement
order parameter: Polyakov loop

Φ = 1
Nc

Trc

〈〈

P exp
[

i
∫ β

0 dτA4(~x, τ)
]〉〉

Φ

{

= 0 ⇔ confined phase, T < Tc

6= 0 ⇔ deconfined phase, T > Tc

PURPOSE: Consider a model which describes both low and high
temperature QCD behavior in a single picture → PNJL model
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Motivation

Open questions:

Restoration of chiral symmetry and deconfinement:

Connection between chiral symmetry and confinement?

Can both transitions occur simultaneously?

1st− order chiral phase transition at high baryon density?

Where is the CEP?

Does an external magnetic field enhances the χS breaking? Magnetic
catalysis (MC). (The magnetic field has a strong tendency to enhance
("catalyze") spin-zero fermion-antifermion condensates);

Or, can the magnetic field suppress the quark condensate (inverse
magnetic catalysis (IMC))?
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Lattice calculations

Lattice calculations at Finite Temperature:

Restoration of chiral symmetry and deconfinement:

both transitions can occur simultaneously?

Phase transition:

N f = 2+1:
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− A. Bazavov, et al., PRD 85 (2012) 054503 − Y. Aoki, et al., JHEP 0906 (2009) 088
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Lattice calculations

Lattice calculations at Finite Temperature:

Effect of an external magnetic field on the finite temperature transition of

QCD

Phase transition deduced

from peaks in susceptibilities

− G. S. Bali, et al., JHEP 1202 (2012) 044

Polyakov Loop

− F. Bruckmann, et al., JHEP 1304 (2013) 112
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Model and formalism

PNJL model in the presence of an external magnetic field

LPNJL = q̄ (iγµDµ − m̂) q +
gS

2

8

∑
a=0

[

(q̄λaq)2 + (q̄(iγ5)λ
aq)2

]

+ gD

[

det
[

q̄(1 + γ5)q
]

+ det
[

q̄(1 − γ5)q
]

]

+ U (Φ, Φ̄; T)−
1

4
FµνFµν

where m̂ = diag(mu, md, ms) is the current quark mass matrix

Dµ = ∂µ − iq f AµEM − igAµ ; Aµ = δ
µ
0 A0 (Polyakov gauge)

Fµν = ∂µAEM
ν − ∂νAEM

µ

AEM
µ = δµ2x1B static and constant magnetic field in the z direction

Coupling between Polyakov loop and quarks uniquely determined by covariant
derivative Dµ

Φ(~x) =
1

Nc
Trc

〈〈

P exp

[

i
∫ β

0
dτA4(~x, τ)

]〉〉
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Model and formalism

Effective potential U (Φ, Φ̄; T)

Effective potential for the (complex) Φ field: is conveniently chosen to
reproduce results obtained in lattice calculations

U (Φ, Φ̄; T)

T4
= −

a (T)

2
Φ̄Φ+ b(T)ln[1 − 6Φ̄Φ+ 4(Φ̄3 +Φ3)− 3(Φ̄Φ)2]

with

a (T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

, b(T) = b3

(

T0

T

)3

a0 a1 a2 b3

3.51 -2.47 15.2 -1.75

and T0 = 270 MeV

− S. Roessner, C. Ratti, W. Weise, PRD 75 (2007) 034007
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Model and formalism

Polyakov loop extended NJL model

The model includes features of both chiral and Z3 symmetry breaking;

The coupling is fundamental for reproducing lattice results concerning
QCD thermodynamics: it originates a suppression of the unconfined

quarks in the hadronic phase 1 (low temperature);

A non-zero Polyakov loop reflects the spontaneously broken Z3

symmetry characteristic of deconfinement (high temperature);

Z3 is broken in the deconfined phase (Φ→ 1);

Z3 is restored in the confined one (Φ→ 0);

At T = 0: Φ = Φ̄ = 0 7−→ both sectors decouple.

1− C. Ratti, et al., PRD 73 (2006) 014019
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PNJL vs. lattice calculations

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

Lattice
Change of the light condensate due to eB:

∆Σ f (eB, T) = Σ f (eB, T)− Σ f (0, T),

with

Σ f (eB, T) =
2m f

m2
π f 2
π

[〈

q̄ f q f

〉

(eB, T)−
〈

q̄ f q f

〉

(0, 0)
]

+ 1

For T = 0 NJL and PNJL models coincide;

Results quantitatively agree with lattice1 and even at eB = 1 GeV2 there
is a discrepancy of the order of ∼ 15 %.

At T = µB = 0 chiral symmetry is always broken with eB.

1− G. S. Bali, et al., PRD 86 (2012) 071502
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PNJL Pseudocritical temperatures

Pseudocritical temperatures:

Separate the different phases in PNJL model

Criteria to identify the partial restoration of chiral symmetry

and the transition to the deconfinement:

∂2〈ūu〉
∂T2 =

∂2〈d̄d〉
∂T2 = ∂2Φ

∂T2 = 0
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PNJL Pseudocritical temperatures

C f = −mπ∂σ f /∂T (where σ f =< q̄ f q f > (eB, T)/ < q̄ f q f > (B, 0)); CΦ = mπ∂Φ/∂T

Smooth crossover from the chirally broken to the chirally symmetric phase: partial

restoration of χS

Tχ for u and d quark transitions become different as eB increases;

qu = 2e/3; qd = −e/3 7−→ Mu becomes larger and the restoration of χS in the u

sector is delayed:

Tχu is higher than Tχd .

CΦ becomes narrower as eB increases 7−→ eventually for sufficient strong eB a 1st−

order phase transition takes place.
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PNJL Pseudocritical temperatures

Pseudocritical temperatures for the chiral transition
(

Tχc = (Tχu + Tχd )/2
)

and

for the deconfinement (TΦc ) with T0 = 210 MeV.

PNJL

eB Tχu Tχd Tχc TΦc

[GeV2 ] [MeV] [MeV] [MeV] [MeV]

0 199 199 199 170

0.2 208 207 208 171

0.4 226 224 225 174

0.6 245 241 243 177

0.75 261 253 257 181

0.8 266 256 261 182

1 287 270 279 186

0.0 0.2 0.4 0.6 0.8 1.0
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 Tc
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 Tc

 Tc

T c
 ( M

eV
 )
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As eB becomes stronger, the separation between Tχc and TΦc increases;

eB has a smaller impact in the location of the deconfinement crossover: TΦc has just a

weaker increase.

− M. Ferreira, et al., PRD 89 (2014) 036006
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PNJL magnetic catalysis

Change of the renormalized condensates as a function of eB for several
temperatures:

T < Tχc (eB = 0):

condensates average increase with eB

its value is greater the higher the

temperature

(due to the magnetic catalysis effect)

T > Tχc (eB = 0):

Two competitive effects: partial restoration of χS and magnetic catalysis.

Partial restoration of χS prevails at lower values of eB:

the change of the renormalized condensates is approximately zero;

The magnetic catalysis becomes dominant as eB increases:

the change of the renormalized condensates condensate becomes nonzero.

P. Costa− PANIC 14, 25-29 August 2014 – p. 17/34



PNJL phase diagram

Asymmetric quark matter: location of the CEP depends on the isospin

d-quark rich matter as it occurs in:

HIC − asymmetry presently attained in HIC: µu < µd < 1.1µu;

neutron stars − neutron matter has µd ∼ 1.2µu;
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CEPs calculated at µs = 0:

Increasing the isospin asymmetry moves

the CEP to smaller T and larger µB;

Matter being less symmetric is less

bound: the transition to a chirally

symmetric phase occurs at a smaller

temperature and density than the

symmetric case;

µd ∼ 1.45µu: asymmetry large enough →

the CEP disappears.
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PNJL phase diagram
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Phase transition driven by the magnetic field will occur (for µd > 1.45µu):

possible appearance of multiple CEPs for for sufficiently small values of eB and T.

The trend is very similar for different scenarios:

as the intensity of the magnetic field increases, TCEP increases and µCEP
B

decreases until eB ∼ 0.3 GeV2;

for stronger magnetic fields both TCEP and µCEP
B increase.

− P. Costa, et al., PRD 89 (2014) 056013
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Lattice calculations

Inverse Magnetic Catalysis (IMC):

− G. S. Bali, et al., JHEP 1202 (2012) 044 − F. Bruckmann, et al., JHEP 1304 (2013) 112
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Strong coupling: the influence of eB

In the lower p region, relevant for the chiral symmetry breaking
dynamics: effect of screening of the gluon interactions in a magnetic field;

The strong coupling αs decreases with eB 1:

αs(eB) =
1

(11Nc − 2N f )/6π ln(|eB|/Λ2
QCD)

;

Presence of a magnetic field: weakening of the interaction between
quarks;

In the NJL model: Gs ∝ αs 7−→ Gs(eB);

In the presence of a magnetic field 7−→ Gs decreases with eB.

• "The Importance of Asymptotic Freedom for the Pseudocritical Temperature in Magnetized Quark

Matter", R. L. S. Farias, et al., arXiv:1404.3931 [hep-ph]

• "Inverse magnetic catalysis in the (2+1)-flavor Nambu–Jona-Lasinio and Polyakov–Nambu–Jona-Lasinio

models", M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, PRD 89 (2014)

116011

1− V. A. Miransky, et al., PRD 66 (2002) 045006
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NJL with Gs(eB) - IMC

Pseudocritical transition temperatures:

Gs(eB) is fitted in order to reproduce Tχc (eB) obtained in LQCD:

− M. Ferreira, et al., PRD 89 (2014) 116011
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PNJL with Gs(eB) - IMC

Inserting Gs(eB) in the PNJL model:

Increasing eB 7−→ both transitions occur at lower temperatures.

− M. Ferreira, et al., PRD 89 (2014) 116011
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PNJL with Gs(eB) - IMC

The Polyakov loop and chiral condensate behaviors as functions of eB
reproduce qualitatively LQCD results:

At a fixed T the Polyakov loop increases with eB;

The chiral condensate has a nonmonotonic behavior.

P. Costa− PANIC 14, 25-29 August 2014 – p. 24/34



PNJL with Gs(eB) - IMC

Introducing a repulsive vector contribution:

Lvec = −GV

8

∑
a=0

[

(ψ̄γµλaψ)
2 + (ψ̄γµγ5λaψ)

2
]
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Summary and Conclusions

In the presence of an external magnetic field at T = 0, the quantitative
behavior of SU(3) PNJL is closer to the lattice results;

Chiral and deconfinement transition temperatures increase (magnetic
catalysis) in the presence of an external magnetic field, although the
deconfinement transition temperature suffers a much weaker effect;

In the presence of a large enough isospin asymmetry the CEP does not
exist for a zero external magnetic field. A sufficiently high external
magnetic field can drive the system into a first order phase transition
again;

A running coupling Gs(eB), motivated by asymptotic freedom and that
reproduces the qualitative behavior of chiral pseudocritical temperature
given by LQCD, leads to the inverse magnetic catalysis in the PNJL
model.
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Appendix: Model and formalism

Parameters and results:

Parameter set

Physical quantities and constituent quark masses

fπ = 92.4 MeV mu = md = 5.5 MeV

Mπ = 135.0 MeV ms = 140.7 MeV

MK = 497.7 MeV Λ = 602.3 MeV

Mη′ = 960.8 MeV gSΛ
2 = 3.67

Mη = 514.8 MeV∗ gDΛ
5 = −12.36

fK = 97.7 MeV∗ Mu= Md = 367.7 MeV∗

Mσ = 728.8 MeV∗ Ms = 549.5 MeV∗

Ma0
= 873.3 MeV∗

Mκ = 1045.4 MeV∗

M f0
= 1194.3 MeV∗

θP = −5.8o∗ ; θS = 16o∗

− S. P. Klevansky, et al., PRC 53 (1996) 410 − P. Costa, et al. PRD 71 (2005) 116002
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Appendix: Model and formalism

Effective potential U(Φ, Φ̄, T):

Φ→ 0: confined phase Φ→ 1: deconfined phase

 0
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 0.5

 U( Φ ) / T4

Low temperature: Z3 symmetric, confined phase (Z3 center of SUc(3)
symmetry);

High temperature: deconfined phase characterized by the spontaneous
breaking of the Z3 symmetry.

− H. Hansen, et al., PRD 75 (2007) 065004
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Appendix: Model and formalism

Model and formalism:

The calculations in NJL model can be generalized to the PNJL one by
introducing the modified Fermi–Dirac distribution functions (with β = 1/T):

f (Ei −µ) =
1

1 + eβ(Ei−µ)
7→ f+Φ (Ei) =

(

Φ̄+ 2Φe−β(Ei−µ)
)

e−β(Ei−µ) + e−3β(Ei−µ)

1 + 3
(

Φ̄+Φe−β(Ei−µ)
)

e−β(Ei−µ) + e−3β(Ei−µ)

f (Ei +µ) =
1

1 + eβ(Ei+µ)
7→ f−Φ (Ei) =

(

Φ+ 2Φ̄e−β(Ei+µ)
)

e−β(Ei+µ) + e−3β(Ei+µ)

1 + 3
(

Φ+ Φ̄e−β(Ei+µ)
)

e−β(Ei+µ) + e−3β(Ei+µ)

For example the quark condensates are calculated according to:

〈〈q̄iqi〉〉 = −2Nc

∫

d3 p

(2π)3

Mi

Ei
[θ(Λ2 − p2)− f+Φ (Ei)− f−Φ (Ei)]

− H. Hansen, et al., PRD 75 (2007) 065004
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Appendix: Model and formalism

In the presence of an external magnetic field B = Bẑ:

Ei →
√

p2
z + 2|qiB|n + M2

i

n = 0, 1, 2, ... is the Landau level.

Dimensional reduction: D → D − 2 7−→ kx, ky, kz → kz.

The model is modified in the following:

2
∫

d3 p

(2π)3
f (Ei) →

|qB|

2π

∞

∑
n=0

αn

∫

dpz

2π
f

(

√

p2
z + 2|qB|n + M2

i

)

with α0 = 1 and αn 6=0 = 2
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Appendix: Model and formalism

PNJL model at finite T, µ in an external magnetic field eB

The thermodynamic potential is:

Ω(T,µi) = U (Φ, Φ̄, T)− Nc ∑
i=u,d,s

|qi|eB

2π

∞

∑
n=0

αn

∫

∞

−∞

dpz

2π

(

Ei

+
T

3
ln
{

1 + 3Φ̄e−(Ei−µi)/T + 3Φe−2(Ei−µi)/T + e−3(Ei−µi)/T
}

+
T

3
ln
{

1 + 3Φe−(Ei+µi)/T + 3Φ̄e−2(Ei+µi)/T + e−3(Ei+µi)/T
}

)

+ g
S ∑
{i=u,d,s}

〈q̄iqi〉
2 − 4gD 〈q̄uqu〉 〈q̄dqd〉 〈q̄sqs〉

with Ei =
√

2n|qi|eB + p2
z + M2

i
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Appendix: Model and formalism

Methodology:

Minimization of Ω(T,µ f ) with respect to M f ( f = u, d, s)

“Gap” equations:

M f = m f − 2 gS 〈q̄ f q f 〉 + 2 gD 〈q̄ j q j〉〈q̄k qk〉

Effective action for the scalar and pseudoscalar mesons

Meson propagators, gMq̄q, fMq̄q,...
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