Recent Results on TMDs

20th Particles and Nuclei International Conference
25-29 August, 2014
Hamburg, Germany
Ami Rostomyan
(for the HERMES collaboration)
ASSOCIATION

HERMES main research topics:

\checkmark origin of nucleon spin
~ longitudinal spin/momentum structure

* transverse spin/momentum structure
\checkmark hadronization/fragmentation

HERMES main research topics:

\checkmark origin of nucleon spin

~ longitudinal spin/momentum structure

- transverse spin/momentum structure

\checkmark hadronization/fragmentation

\checkmark nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents

* momentum: quarks carry ~50 \% of the proton momentum
* spin: total quark spin contribution only $\sim 30 \%$
\Rightarrow study of TMD DFs and GPDs
spin and hadronization

HERMES main research topics:

origin of nucleon spin

~ longitudinal spin/momentum structure

- transverse spin/momentum structure

hadronization/fragmentation

\checkmark nucleon properties (mass, charge, momentum, magnetic moment, spin...) should be explained by its constituents

* momentum: quarks carry $\sim 50 \%$ of the proton momentum
* spin: total quark spin contribution only $\sim 30 \%$
\Rightarrow study of TMD DFs and GPDs
\checkmark isolated quarks have never been observed in nature
\checkmark fragmentation functions were introduced to describe the hadronization
* non-pQCD objects
* universal but not well known functions
\Rightarrow advantage of lepton-nucleon scattering data \rightarrow flavour separation of fragmentation functions (FFs)

advantages of the experiment

The HERMES experiment, located at HERA, with its pure gas targets and advanced particle identification (π, K, p) is well suited for TMD and GPD measurements and for studies of hadronisation process.
self-polarized $\mathrm{e}^{+} / \mathrm{e}^{-}$beam

hadron identification with RICH detector

ω longitudinal target polarization ($\mathrm{H}, \mathrm{D},{ }^{3} \mathrm{He}$)
~ transverse target polarization (H)
~ unpolarized targets: $\mathrm{H}, \mathrm{D},{ }^{4} \mathrm{He},{ }^{14} \mathrm{~N},{ }^{\mathbf{2 0}} \mathrm{Ne},{ }^{84} \mathrm{Kr},{ }^{131} \mathrm{Xe}$

* unpolarized H, D targets with recoil detector

semi-inclusive DIS cross section and TMDs

$$
\begin{aligned}
\frac{d^{6} \sigma}{d x d y d z d P_{h \perp}^{2} d \phi d \phi_{s}} & \propto\left\{F_{U U}+\sqrt{2 \epsilon(1+\epsilon)} F_{U U}^{\cos \phi} \cos \phi+\epsilon F_{U U}^{\cos 2 \phi} \cos 2 \phi\right\} \\
& +\lambda_{e}\left\{\sqrt{2 \epsilon(1-\epsilon)} F_{U L}^{\sin \phi} \sin \phi\right\}+S_{\|}\{\ldots\}+S_{\perp}\{\ldots\}+\ldots
\end{aligned}
$$

leading twist TMD DF:
parameterise the quark-flavour
structure of the nucleon

semi-inclusive DIS cross section and TMDs

$$
\begin{aligned}
& \frac{d^{6} \sigma}{d x d y d z d P_{h \perp}^{2} d \phi d \phi_{s}} \propto\left\{F_{U U}+\sqrt{2 \epsilon(1+\epsilon)} F_{U U}^{\cos \phi} \cos \phi+\epsilon F_{U U}^{\cos 2 \phi} \cos 2 \phi\right\} \\
& +\lambda_{e}\left\{\sqrt{2 \epsilon(1-\epsilon)} F_{U L}^{\sin \phi} \sin \phi\right\}+S_{\|}\{\ldots\}+S_{\perp}\{\ldots\}+\ldots \\
& \text { parameterise the quark-flavour } \\
& \text { structure of the nucleon } \\
& \text { leading twist TMD FF: } \\
& \text { number densities for the } \\
& \text { conversion of a quark of a } \\
& \text { certain type to a specific } \\
& \text { hadron }
\end{aligned}
$$

semi-inclusive DIS cross section and TMDs

HERMES: access to all TMDs thanks to the polarised beam and target

semi-inclusive DIS cross section and TMDs

$$
\begin{aligned}
\frac{d^{6} \sigma}{d x d y d z d P_{h \perp}^{2} d \phi d \phi_{s}} & \propto\left\{F_{U U}+\sqrt{2 \epsilon(1+\epsilon)} F_{U U}^{\cos \phi} \cos \phi+\epsilon F_{U U}^{\cos 2 \phi} \cos 2 \phi\right\} \\
& +\lambda_{e}\left\{\sqrt{2 \epsilon(1-\epsilon)} F_{U L}^{\sin \phi} \sin \phi\right\}+S_{\| \|}\{\ldots\}+S_{\perp}\{\ldots\}+\ldots
\end{aligned}
$$

leading twist TMD DF:

parameterise the quark-flavour
structure of the nucleon

$$
\text { PRL } 94 \text { (2005) } 012002
$$ PLB 693 (2010) 11

PRL 94 (2005) 012002 PRL 103 (2009) 152002
leading twist TMD FF: number densities for the conversion of a quark of a certain type to a specific hadron $_{\text {RDD87 (2018) } 074029}$

Ami Rostomyan

unpolarised quarks

$$
\begin{gathered}
\sigma_{U U} \propto f_{1} \otimes D_{1} \\
f_{1}=\Theta
\end{gathered}
$$

unpolarised quarks

$$
\begin{array}{r}
\sigma_{U U} \propto f_{1} \otimes D_{1} \\
f_{1}= \\
M^{h}=\frac{d \sigma_{S I D I S}^{h}\left(x, Q^{2}, z, P_{h \perp}\right)}{d \sigma_{D I S}\left(x, Q^{2}\right)}
\end{array}
$$

unpolarised quarks

LO interpretation of multiplicity results (integrated over $\mathbf{P}_{\mathrm{h} \perp}$):
$M^{h} \propto \frac{\sum_{q} e_{q}^{2} \int d x f_{1 q}\left(x, Q^{2}\right) D_{1 q}^{h}\left(z, Q^{2}\right)}{\sum_{q} e_{q}^{2} \int d x f_{1 q}\left(x, Q^{2}\right)}$
\checkmark charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process

unpolarised quarks

LO interpretation of multiplicity results (integrated over $\mathbf{P}_{\mathrm{h} \perp}$):

$M^{h} \propto \frac{\sum_{q} e_{q}^{2} \int d x f_{1 q}\left(x, Q^{2}\right) D_{1 q}^{h}\left(z, Q^{2}\right)}{\sum_{q} e_{q}^{2} \int d x f_{1 q}\left(x, Q^{2}\right)}$
\checkmark charge-separated multiplicities of pions and kaons sensitive to the individual quark and antiquark flavours in the fragmentation process
π^{+}and K^{+}:
© favoured fragmentation on proton
π^{-}:
me increased number of d-quarks in D target and favoured fragmentation on neutron
K^{-}:

* cannot be produced through favoured fragmentation from the nucleon valence quarks

\checkmark calculations using DSS, HNKS and Kretzer FF fits together with CTEQ6L PDFs proton:
~ fair agreement for positive hadrons
~ disagreement for negative hadrons

deuteron:

\sim results are in general in better agreement with the various predictions

unpolarised quarks

\checkmark calculations using
nS and Kretzer FF fits together with CTEQ6L PDFs proton:
fai f we nt for positive hadrons cment for negative hadrons
results are in general in better agreement with the various predictions

New global fit DSS+

new data sets since DSS
\Rightarrow Belle, BaBar, Compass, Hermes, Star, Alice

- Rodolfo Sassot -

Workshop on FFs, Bloomington, December 2013

HERMES proton

HERMES deuteron

\checkmark better agreement for both π^{+}and π^{-}

evaluation of strange quark distribution

$\sqrt{ }$ in the absence of experimental constraints, many global QCD fits of PDFs assume

$$
s(x)=\bar{s}(x)=r[\bar{u}(x)+\bar{d}(x)] / 2
$$

\checkmark isoscalar extraction of $S(x) \mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$ based on the multiplicity data of K^{+}and K^{-}on D

$$
S(x) \int \mathcal{D}_{S}^{K}(z) d z \simeq Q(x)\left[5 \frac{\mathrm{~d}^{2} N^{K}(x)}{\mathrm{d}^{2} N^{D I S}(x)}-\int \mathcal{D}_{Q}^{K}(z) d z\right]
$$

evaluation of strange quark distribution

$\sqrt{ }$ in the absence of experimental constraints, many global QCD fits of PDFs assume

$$
s(x)=\bar{s}(x)=r[\bar{u}(x)+\bar{d}(x)] / 2
$$

\checkmark isoscalar extraction of $S(x) \mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$ based on the multiplicity data of K^{+}and K^{-}on D

$$
S(x) \int \mathcal{D}_{S}^{K}(z) d z \simeq Q(x)\left[5 \frac{\mathrm{~d}^{2} N^{K}(x)}{\mathrm{d}^{2} N^{D I S}(x)}-\int \mathcal{D}_{Q}^{K}(z) d z\right]
$$

$$
\begin{aligned}
S(x) & =s(x)+\bar{s}(x) \\
Q(x) & =u(x)+\bar{u}(x)+d(x)+\bar{d}(x) \\
\mathcal{D}_{\mathcal{S}}^{\mathcal{K}} & =D_{1}^{s \rightarrow K^{+}}+D_{1}^{\bar{s} \rightarrow K^{+}}+D_{1}^{s \rightarrow K^{-}}+D_{1}^{\bar{s} \rightarrow K^{-}} \\
\mathcal{D}_{\mathcal{Q}}^{\mathcal{K}} & =D_{1}^{u \rightarrow K^{+}}+D_{1}^{\bar{u} \rightarrow K^{+}}+D_{1}^{d \rightarrow K^{+}}+D_{1}^{\bar{d} \rightarrow K^{+}}+\ldots
\end{aligned}
$$

\checkmark the distribution of $\mathrm{S}(\mathrm{x})$ is obtained for a certain value of $\mathcal{D}_{\mathcal{S}}^{\mathcal{K}}$
\checkmark the normalization of the data is given by that value
\checkmark whatever the normalization, the shape is incompatible with the predictions

beyond the collinear factorisation

- HERMES Collaboration-

Phys.Rev.D87 (2013) 074029

\checkmark multi-dimensional analysis allows exploration of new kinematic dependences
$\checkmark_{\text {broader }} \mathrm{P}_{\mathrm{h} \perp}$ distribution for K^{-}

flavour-dependent and independent anzatses

M. Anselmino, M. Boglione, J.O. Gonzalez H.,
S. Melis, A. Prokudin JHEP (2014)

$$
\boldsymbol{P}_{T}=z \boldsymbol{k}_{\perp}+\boldsymbol{p}_{\perp}
$$

- flavour-independent analysis

$$
\begin{aligned}
& f_{q / p}\left(x, k_{\perp}\right)=f_{q / p}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle} \\
& D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{aligned}
$$

flavour-dependent and independent fits

M. Anselmino, M. Boglione, J.O. Gonzalez H., S. Melis, A. Prokudin JHEP (2014)

no fit on K data:

\Rightarrow the precision and accuracy of the kaon data do not help in constraining the values of the fit parameters.

$\left\langle k_{\perp}^{2}\right\rangle=0.57 \pm 0.08 \mathrm{GeV}^{2}, \quad\left\langle p_{\perp}^{2}\right\rangle=0.12 \pm 0.01 \mathrm{GeV}^{2}$
Ami Rostomyan

$$
\begin{gathered}
\left\langle P_{\perp, \text { fav }}^{2}\right\rangle<\left\langle P_{\perp, \text { unf }}^{2}\right\rangle \sim\left\langle P_{\perp, \mathrm{u} K}^{2}\right\rangle \\
\left\langle\boldsymbol{k}_{\perp, d_{v}}^{2}\right\rangle<\left\langle\boldsymbol{k}_{\perp, u_{v}}^{2}\right\rangle<\left\langle\boldsymbol{k}_{\perp, \text { sea }}^{2}\right\rangle
\end{gathered}
$$

A. Signori, A. Bacchetta, M. Radici and G. Schnell(JHEP, 2013)
fit of eight different target-hadron combinations

quarks' transverse degrees of freedom

Cahn effect

kinematic effect caused by quark intrinsic transverse momentum.

Boer-Mulders effect
correlation between quark transverse momentum and quark transverse spin.

$$
\sigma_{U U} \propto h_{1}^{\perp} \otimes H_{1}^{\perp}
$$

$$
h_{1}^{\perp}=
$$

quarks’ transverse degrees of freedom

$$
\sigma_{U U} \propto h_{1}^{\perp} \otimes H_{1}^{\perp}
$$

- HERMES Collaboration-

Phys.Rev. D87 (2013) 012010
\checkmark negative asymmetry for π^{+}and positive for π^{-}
© from previous publications (PRL94 (2005) 012002, PLB 693 (2010) 11-16):

$$
H_{1}^{\perp, u \rightarrow \pi^{+}}=-H_{1}^{\perp, u \rightarrow \pi^{-}}
$$

- data support Boer-Mulders DF \mathbf{h}_{1}^{\perp} of same sign for u and d quarks
$\checkmark \mathrm{K}^{-}$and K^{+}: striking differences w.r.t. pions
* role of the sea in DF and FF

quarks' transverse degrees of freedom

$\sigma_{U U} \propto h_{1}^{\perp q} \otimes H_{1}^{\perp q}-f_{1}^{q} \otimes D_{1}^{q}$

\checkmark negative asymmetries for π^{+}and π
ω larger effect at high z

- HERMES Collaboration-

Phys.Rev.D87 (2013) 012010
ω - larger magnitude for π^{+}
\checkmark negative asymmetries for K^{+}

- even larger amplitudes in magnitude than those for π^{+}
~ suggest a large contribution from the Boer-Mulders effect
\checkmark compatible with zero asymmetries for K^{-}

Outlook

$$
\begin{aligned}
& d \sigma=d \sigma_{U U}^{0}+\cos (2 \phi) d \sigma_{U U}^{1}+\frac{1}{Q} \cos (\phi) d \sigma_{U U}^{2}+P_{l} \frac{1}{Q} \sin (\phi) d \sigma_{L U}^{3} \\
& \\
& +S_{L}\left[\sin (2 \phi) d \sigma_{U L}^{4}+\frac{1}{Q} \sin (\phi) d \sigma_{U L}^{5}+P_{l}\left(d \sigma_{L L}^{6}+\frac{1}{Q} \sin (\phi) d \sigma_{L L}^{7}\right)\right] \\
& \\
& \left.\quad+S_{T}\left[\sin \left(\phi-\phi_{s}\right) d \sigma_{U T}^{8}+\sin \left(\phi+\phi_{s}\right) d \sigma_{U T}^{9}+\sin \left(3 \phi-\phi_{s}\right) d \sigma_{U T}^{10}+\frac{1}{Q} \sin \left(2 \phi-\phi_{s}\right) d \sigma_{U T}^{11}+\frac{1}{Q} \sin \left(\phi_{s}\right) d \sigma_{U T}^{12} \cos \left(\phi_{s}\right) d \sigma_{L T}^{14}+\frac{1}{Q} \cos \left(2 \phi-\phi_{s}\right) d \sigma_{L T}^{15}\right)\right] \\
& \text { Ami Rostomyan }
\end{aligned}
$$

Outlook

