The GlueX experiment and the search for exotic mesons

Will Levine

August 2014

Outline

- Meson spectroscopy
 - Conventional and exotic meson quantum numbers
 - Hybrid mesons
 - Amplitude analysis
 - Experimental observation of exotic mesons
- GlueX experiment
 - Detector
 - Current status

Conventional qq mesons

- Mesons classified by quantum numbers J^{PC}
- SU(3): For each J^{PC}, nonet of mesons
- J^{PC} of $q\overline{q}$ mesons
 - Total spin of $q\overline{q}$ pair: S=0,1
 - Orbital angular momentum: L=0,1,2,...
 - Total angular momentum: J=|L-S|,...,L+S
 - Parity: $P = (-1)^{L+1}$
 - Charge conjugation: $C = (-1)^{L+S}$
 - Allowed J^{PC} : 0⁻⁺, 0⁺⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...

0⁻⁺: S=0; L=0

Exotic quantum number mesons

- What if gluonic field is excited inside mesons?
 - "Hybrid" meson
 - Hybrids could have exotic quantum numbers (0⁺⁻, 0⁻⁻, 1⁻⁺, 2⁺⁻, ...) not allowed in simple $q\overline{q}$ meson
 - Expect hybrids in nonets
- Lattice QCD predicts mass, J^{PC} of hybrids
- Models predict decay modes of hybrids
- Limited experimental evidence

- Non-perturbative QCD on lattice
- Identify hybrid-like states by overlap with qqg-like operators
- Lowest mass hybrid states: 0⁻⁺, 1⁻⁻, 2⁻⁺, 1⁻⁺
- Higher mass exotics: 0⁺⁻, 2⁺⁻
- Note m_{π} = 396 MeV (mass predictions may not be precise)

Hybrid meson decay modes

	Approximate	J^{PC}	Total Widt	h (MeV)	Relevant Decays	Final States
	Mass (MeV)		PSS	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^\dagger, ho\pi^\dagger,f_1\pi^\dagger,a_1\eta,\eta^\prime\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger},5\pi,\eta3\pi^{\dagger},\eta^{\prime}\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi,f_1\eta^\dagger,\pi(1300)\pi$	$4\pi,\eta4\pi,\eta\eta\pi\pi^{\dagger}$
η_1'	2300	1^{-+}	100-220	170	$K_1(1400)K^\dagger,K_1(1270)K^\dagger,K^*K^\dagger$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	250-430	670	$\pi(1300)\pi,h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1 \pi^\dagger, h_1 \eta, K(1460) K$	$\omega\pi\pi^{\dagger},\eta3\pi,KK\pi\pi$
h_0'	2500	0^{+-}	260-490	430	$K(1460)K,K_{1}(1270)K^{\dagger},h_{1}\eta$	$KK\pi\pi^\dagger,\eta 3\pi$
b_2	2500	2^{+-}	10	250	$a_2\pi^\dagger,a_1\pi,h_1\pi$	$4\pi,\eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	10	170	$b_1\pi^\dagger,\rho\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger}$
h_2'	2600	2^{+-}	10 - 20	80	$K_1(1400)K^\dagger,K_1(1270)K^\dagger,K_2^*K^\dagger$	$KK\pi\pi^\dagger,KK\pi^\dagger$

- High multiplicity final states (up to 5π)
- Neutral and charged decay products
- Isoscalar states decay to K's

Amplitude Analysis

- Amplitude analysis (aka partial-wave analysis) uses angular distribution of finalstate particles to determine J^{PC}'s of interfering parent resonances
- Phase motion indicates resonance in partial wave

GlueX simulated data: $\gamma p \rightarrow \pi^+ \pi^- \pi^+ n$

Experimental evidence for hybrids

- Previous searches for hybrid mesons
 - Pionproduction (COMPASS, E852, VES)
 - pp̄ annihilation (Crystal Barrel)
 - Charmonium decays (CLEO)
 - Photoproduction (CLAS)
- Only π_1 (isovector, 1⁻⁺) states claimed
 - $\pi_1(1400)$ only $\eta\pi$ decay seen, possible non-resonant interpretation
 - $\pi_1(1600)$ $b_1\pi$, η'π, $f_1\pi$ decays seen by multiple experiments, $\rho\pi$ decay mode disputed
 - $\pi_1(2000)$ needs further confirmation
 - See review: Meyer and Van Haarlem, PRC 82, 025208 (2010)
- No sightings of isospin 0 states or other exotic J^{PC} (0⁺⁻, 2⁺⁻)
- Exotic sector needs further clarification!
 - Limited data in photoproduction—promising for future searches

GlueX @ JLab

- CEBAF accelerator at Jefferson Lab (Newport News, Virginia)
- 12 GeV electron beam
- GlueX photoproduction experiment located in Hall D at Jlab
- Starts operation in 2015

Photon beam

- Photon beam produced by coherent bremsstrahlung of 12 GeV electron beam on 20-µm thin diamond radiator
 - Coherent peak from $E_v = 8.4-9$ GeV
 - 40% linear polarization in coherent peak
 - 10⁷-10⁸ photons/s on target
- Tagger measures energy of beam photons
 - Tagger microscope: $E_{\gamma} = 8.4-9$ GeV, E resolution 0.1%
 - Tagger hodoscope: E_γ = 3-11.6 GeV,
 E resolution 0.2-0.5%
- Linear polarization
 - Helps in amplitude analysis
 - Distinguish parity of exchange particles

- Need exclusive reconstruction of high-multiplicity final states
 - Large acceptance
 - Tracking and Calorimetry
 - K/ π separation

GlueX in Hall D

GlueX detector

- Solenoid
 - 1350A, 2T
 - Previously at LASS,
 MEGA, refurbished for
 GlueX
- Liquid H₂ target
- Start counter
 - 30 thin scintillators surrounding target
 - ~350 ps resolution

Central Drift Chamber

- 28 straw tube layers
 - 12 axial, 16 stereo (±6°)
 - 3522 straws
- $\sigma_{r/\phi} = 150 \ \mu m$, $\sigma_z = 1.5 \ mm$

Forward Drift Chamber

- 4 packages; 6 cells per package
 - Cell = cathode plane wire plane – cathode plane
 - Each layer at 60° from neighbors
 - Cathode plane at 75° to wires
 - Sense wires alternate with field wires
 - 96 sense wires/plane: 2304 sense wires
 - 216 cathodes strips/plane: 10368 cathode strips
 - Both wires and cathodes read out
- σ_{x/y} = 200 μm

Barrel Calorimeter

- Lead/scintillating fiber matrix
- $\sigma_{\rm E}/{\rm E} = 5\%/{\rm VE} \oplus 1\%$
- Double-ended readout by silicon photomultipliers

Forward Calorimeter

- 2800 lead glass blocks
- $\sigma_{\rm E}/{\rm E} = 6\%/{\rm VE} \oplus 2\%$

Time of flight

- Horizontal scintillator array + vertical scintillator array
- 70 ps resolution
- 3σ K/π separation up to p=2.5 GeV

FDIRC

- Focusing Detection of Internally Reflected Cherenkov light
 - Reuse of BaBar DIRC components recently approved
 - $3\sigma K/\pi$ separation up to p=4 GeV
- Enhance ability to study exotic and non-exotic ss mesons

- Installation in 2017-2018

Current status

- Most detector systems installed and operational
- Taking data with cosmics
- Commissioning beam in October
- Physics beam in 2015!

Summary

- GlueX to study hybrid/exotic meson spectrum
- Other physics in Hall D
 - Non-exotic meson and baryon (Ξ^*) spectroscopy
 - Measure charged pion polarizability
 - Precision $\eta \rightarrow \gamma \gamma$ width
 - Rare η decay studies
- First physics data in 2015
- High-intensity running and new Cherenkov detector starting in 2017