

Lucie Linssen, CERN

on behalf of the CLIC detector and physics collaboration (CLICdp)



#### Particles and Nuclei International Conference, Hamburg August 28th 2014

## this talk



- Introduction to CLIC
- Direct BSM searches
  - Use SUSY models as example
- Precision measurements
  - Examples: Higgs compositeness, Z'
- Summary

Other CLIC physics talks at this conference:

- Higgs physics: <a href="https://indico.desy.de/contributionDisplay.py?sessionId=32&contribId=125&confId=8648">https://indico.desy.de/contributionDisplay.py?sessionId=32&contribId=125&confId=8648</a>
- Top physics: <a href="https://indico.desy.de/contributionDisplay.py?contribId=123&sessionId=32&confId=8648">https://indico.desy.de/contributionDisplay.py?contribId=123&sessionId=32&confId=8648</a>

### the CLIC accelerator



#### CLIC is the most mature option for a future multi-TeV scale e<sup>+</sup>e<sup>-</sup> collider



- 2-beam acceleration scheme at room temperature
- Gradient 100 MV/m =>  $\sqrt{s}$  up to 3 TeV
- Staging scenario ~350 GeV up to 3 TeV
- High luminosity (a few 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>)

### **CLIC focus is on energy frontier reach !**



Fig. 7.2: CLIC footprints near CERN, showing various implementation stages [5]. Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014 3

### energy stages at CLIC



#### CLIC: e<sup>+</sup>e<sup>-</sup> collider, staged approach

- **350 375 GeV**, 500 fb<sup>-1</sup>: precision Higgs and top physics
- ~1.4 TeV, 1.5 ab<sup>-1</sup>: targeted at BSM physics, precision Higgs
- **~ 3 TeV, 2** ab<sup>-1</sup>: targeted at BSM physics, precision Higgs

**Exact energies of TeV stages would depend on LHC results** 



### detector benchmark studies



Benchmark studies based on full detector simulations (Geant4)



CLIC ILD



CLIC detector concepts based on ILC detector concepts adapted for CLIC

Pile-up from  $\gamma\gamma \rightarrow$  hadrons interactions overlaid on the physics event



- 3.2 event per BX at 3 TeV
- Suppressed using timing information of the detectors and hadron-collider type jet algorithms



### investigated SUSY models



#### CDR model I, 3 TeV:

- Squarks
- Heavy Higgs
- Higgs
- τ̃, μ̃, ẽ
- charginos
- squarks
- SM tī
- $\widetilde{\nu}_{\tau}, \widetilde{\nu}_{\mu}, \widetilde{\nu}_{e}$ 
  - neutralinos

#### CDR model II, 3 TeV:

- Smuons, selectrons
- Gauginos

#### CDR model III, 1.4 TeV:

- Smuons, selectrons
- Staus
- Gauginos

Wider capability than only SUSY: reconstructed particles can be interpreted as "states of given mass, spin and quantum numbers"

### the simplest case: slepton at 3 TeV



### Slepton production at CLIC very clean

slepton masses ~ 1 TeV

Investigated channels include

• 
$$e^+e^- \rightarrow \tilde{\mu}^+_R \tilde{\mu}^-_R \rightarrow \mu^+ \mu^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$$
  
•  $e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$   
•  $e^+e^- \rightarrow \tilde{\nu}_e \tilde{\nu}_e \rightarrow e^+e^- W^+ W^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$ 





# jet clustering, e.g. squark study at 3 TeV

$$e^+e^- \rightarrow \tilde{q}_R \tilde{q}_R \rightarrow q \overline{q} \, \tilde{\chi}_1^0 \, \tilde{\chi}_1^0$$

*m*<sub>*q̃*<sub>R</sub></sub> = 1.12 TeV

 Suppression of beam-induced background by timing cuts and "hadron collider" jet clustering





Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014

### di-jet masses: gauginos at 3 TeV





Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014



Entries / 2 ab<sup>-1</sup> 001

50

CLIC

3 TeV

H<sup>±</sup>

0.118

540 GeV

780 GeV,

 $^{4}$  $m_t$  g

N

20

60

40

# sensitivity to Higgs partners

### Higgs partners BSM → accessible up to √s/2

+ HA

H+H.

tt+4b

WWZ+ZZZ

Example MSSM benchmark study at 3 TeV, 2 ab<sup>-1</sup>

- e⁺e- →HA →bbbb
- e<sup>+</sup>e<sup>-</sup> →H<sup>+</sup>H<sup>-</sup> →tbbt

(H, A and H<sup>+</sup> almost degenerate in mass)

**CLIC** 

3 TeV

HA

Complex final states

- H\*H

HA

77

tt+4b

WWZ+ZZZ

#### Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014

1400



### summary of SUSY studies



| $\sqrt{s}$ (TeV) | Process       | Decay mode                                                                                                                                                                                                                                                                                                                                                                                                   | SUSY<br>model | Measured quantity                                                             | Generator<br>value (GeV) | Stat.<br>uncertainty |
|------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------|--------------------------|----------------------|
|                  |               | $\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$                                                                                                                                                                                                                                                                                                            |               | $\tilde{\ell} \text{ mass} \\ \tilde{\chi}_1^0 \text{ mass}$                  | 1010.8<br>340.3          | 0.6%<br>1.9%         |
| 3.0              | Sleptons      | $\widetilde{e}^+_R \widetilde{e}^R  ightarrow e^+ e^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$                                                                                                                                                                                                                                                                                                             | П             | $\ell$ mass $\widetilde{\alpha}^0$ mass                                       | 1010.8                   | 0.3%                 |
|                  |               | $\widetilde{\nu}_e\widetilde{\nu}_e\rightarrow\widetilde{\chi}_1^0\widetilde{\chi}_1^0e^+e^-W^+W^-$                                                                                                                                                                                                                                                                                                          |               | $\tilde{\ell}_1$ mass $\tilde{\ell}_1^{\pm}$ mass $\tilde{\chi}_1^{\pm}$ mass | 1097.2<br>643.2          | 0.4%<br>0.6%         |
| 3.0              | Chargino      | $\widetilde{\chi}_1^+ \widetilde{\chi}_1^-  ightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$                                                                                                                                                                                                                                                                                                     | п             | $\widetilde{\chi}_1^{\pm}$ mass                                               | 643.2                    | 1.1%                 |
| 5.0              | Neutralino    | $\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0 h/Z^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$                                                                                                                                                                                                                                                                                                | п             | $\widetilde{\chi}_2^0$ mass                                                   | 643.1                    | 1.5%                 |
| 3.0              | Squarks       | $\widetilde{q}_{R}\widetilde{q}_{R} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$                                                                                                                                                                                                                                                                                               | Ι             | $\widetilde{q}_R$ mass                                                        | 1123.7                   | 0.52%                |
| 3.0              | Howy Higgs    | $H^0 A^0 \to b \overline{b} b \overline{b}$                                                                                                                                                                                                                                                                                                                                                                  | T             | H <sup>0</sup> /A <sup>0</sup> mass                                           | 902.4/902.6              | 0.3%                 |
| 5.0              | ficavy filggs | $H^+H^- \rightarrow t\overline{b}b\overline{t}$                                                                                                                                                                                                                                                                                                                                                              | 1             | $H^{\pm}$ mass                                                                | 906.3                    | 0.3%                 |
|                  | Sleptons      | $\begin{split} &\widetilde{\mu}_{R}^{+}\widetilde{\mu}_{R}^{-} \rightarrow \mu^{+}\mu^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \\ &\widetilde{e}_{R}^{+}\widetilde{e}_{R}^{-} \rightarrow e^{+}e^{-}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \\ &\widetilde{\nu}_{e}^{-}\widetilde{\nu}_{e} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-} \end{split}$ | ш             | $\widetilde{\ell}$ mass                                                       | 560.8                    | 0.1%                 |
|                  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\widetilde{\chi}_1^0$ mass                                                   | 357.8                    | 0.1%                 |
| 1.4              |               |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\tilde{\ell}$ mass                                                           | 558.1                    | 0.1%                 |
|                  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\widetilde{\chi}_1^0$ mass                                                   | 357.1                    | 0.1%                 |
|                  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\ell$ mass                                                                   | 644.3                    | 2.5%                 |
|                  |               |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\widetilde{\chi}_1^{\pm}$ mass                                               | 487.6                    | 2.7%                 |
| 1.4              | Stau          | $\widetilde{\tau}_1^+ \widetilde{\tau}_1^- \mathop{\rightarrow} \tau^+ \tau^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$                                                                                                                                                                                                                                                                                     | III           | $\widetilde{\tau}_1 \text{ mass}$                                             | 517                      | 2.0%                 |
| 1.4              | Chargino      | $\begin{array}{c} \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^- \\ \widetilde{\chi}_2^0 \widetilde{\chi}_2^0 \rightarrow h/Z^0  h/Z^0  \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \end{array}$                                                                                                                                                      | Ш             | $\widetilde{\chi}_1^{\pm}$ mass                                               | 487                      | 0.2%                 |
| 1.4              | Neutralino    |                                                                                                                                                                                                                                                                                                                                                                                                              |               | $\widetilde{\chi}_2^0$ mass                                                   | 487                      | 0.1%                 |
| ſ                | Large part    | of the SUSY spec                                                                                                                                                                                                                                                                                                                                                                                             | trum          | measured                                                                      | l at <1% le              | evel                 |

### composite Higgs bosons





Allows to probe Higgs compositeness at the 30 TeV scale for 1 ab<sup>-1</sup> at 3 TeV (70 TeV scale if combined with single Higgs production)

### precision studies of $e^+e^- \rightarrow \mu^+\mu^-$



#### Minimal anomaly-free Z' model

charge of SM fermions under U(1)' symmetry:  $Q_f = g_{Y}'(Y_f) + g'_{BL}(B-L)_f$ 

#### **Observables:**

- Total e<sup>+</sup>e<sup>-</sup> => μ<sup>+</sup>μ<sup>-</sup> cross section
- Forward-backward asymmetry
- Left-right asymmetry (±80% e<sup>-</sup> polarisation)



If LHC discovers Z' (e.g. for M<sub>Z'</sub>=5 TeV) Precision measurement of effective couplings

#### **Otherwise:**

**Discovery reach up to tens of TeV** (depending on the couplings)

### if you want to know more

# clc

### **CLIC Conceptual Design report (2012)**

- CLIC CDR (#1), A Multi-TeV Linear Collider based on CLIC Technology, CERN-2012-007, <u>https://edms.cern.ch/document/1234244/</u>
- CLIC CDR (#2), Physics and Detectors at CLIC, CERN-2012-003, <u>arXiv:1202.5940</u>
- CLIC CDR (#3), The CLIC Programme: towards a staged e<sup>+</sup>e<sup>-</sup> Linear Collider exploring the Terascale, CERN-2012-005, <u>http://arxiv.org/abs/1209.2543</u>



#### CLIC physics input to the Snowmass process (2013)

 Physics at the CLIC e+e- Linear Collider, Input to the USA Snowmass process 2013, <u>http://arxiv.org/abs/1307.5288</u>

### welcome to join us !



| Australia                                                                                                                            | Australian Collaboration for Accelerator Science (ACAS),<br>University of Melbourne                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Belarus National Scientific and Educational Centre of Particle and Hig<br>Energy Physics (NC-PHEP), Belarusian State University, Mir |                                                                                                     |  |  |
| Chile                                                                                                                                | Pontificia Universidad Católica de Chile, Santiago                                                  |  |  |
| Czech Republic                                                                                                                       | Institute of Physics of the Academy of Sciences of the Czech<br>Republic, Prague                    |  |  |
| Denmark                                                                                                                              | Department of Physics and Astronomy, Aarhus University                                              |  |  |
| France                                                                                                                               | Laboratoire d'Annecy-le-Vieux de Physique des Particules<br>(LAPP), Annecy                          |  |  |
| Germany                                                                                                                              | Max-Plack-Institut für Physik, Munich                                                               |  |  |
| Israel                                                                                                                               | Department of Physics, Faculty of Exact Sciences, Tel Aviv<br>University                            |  |  |
| Norway                                                                                                                               | Department of Physics and Technology, University of Bergen                                          |  |  |
| Poland The Henryk Niewodniczanski Institute of Nuclear Physics,<br>Polish Academy of Sciences, Cracow                                |                                                                                                     |  |  |
| Poland                                                                                                                               | Faculty of Physics and Applied Computer Science<br>AGH University of Science and Technology, Cracow |  |  |
| Romania                                                                                                                              | Institute of Space Science, Bucharest-Magurele                                                      |  |  |
| Serbia                                                                                                                               | Vinca Institute for Nuclear Sciences, Belgrade                                                      |  |  |
| Spain                                                                                                                                | Spanish Network for Future Linear Colliders                                                         |  |  |
| Switzerland                                                                                                                          | CERN                                                                                                |  |  |
| United Kingdom                                                                                                                       | The School of Physics and Astronomy, University of<br>Birmingham                                    |  |  |
| United Kingdom                                                                                                                       | University of Bristol                                                                               |  |  |
| United Kingdom                                                                                                                       | University of Cambridge                                                                             |  |  |
| United Kingdom                                                                                                                       | University of Glasgow                                                                               |  |  |
| United Kingdom                                                                                                                       | The Department of Physics of the University of Liverpool                                            |  |  |
| United Kingdom                                                                                                                       | Oxford University                                                                                   |  |  |
| USA                                                                                                                                  | Argonne National Laboratory, High Energy Physics Division                                           |  |  |
|                                                                                                                                      | •                                                                                                   |  |  |

### CLICdp: 23 institutes

Light-weight cooperation structure, on best-effort basis, with strong collaborative links to ILC

### http://clicdp.web.cern.ch/

#### Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimisation + R&D for CLIC



### Summary



### CLIC at high energy (~1.4 TeV and 3 TeV) provides significant discovery potential for BSM phenomena

- Measurement of the slepton, squark, gaugino and heavy Higgs masses with O(1%) precision up to kinematic limit √s/2
- In addition to direct particle searches: sensitivity to New Physics at large scales (tens of TeV) through precision measurements (examples composite models and Z')

| New particle                                                      | LHC (14 TeV) | HL-LHC       | CLIC3               |                    |
|-------------------------------------------------------------------|--------------|--------------|---------------------|--------------------|
| squarks [TeV]                                                     | 2.5          | 3            | ≲1.5                | Direct observation |
| Z' (SM couplings) [TeV]                                           | 5            | 7            | $\gtrsim 1.3$<br>20 |                    |
| 2 extra dims $M_D$ [TeV]<br>TGC (95%) ( $\lambda_{\pi}$ coupling) | 9<br>0.001   | 12<br>0.0006 | 20-30<br>0.0001     | Loop /             |
| $\mu$ contact scale [TeV]                                         | 15           | -            | 60<br>70            | effective operator |



# SPARE SLIDES

# **CLIC strategy and objectives**



#### 2013-18 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.





On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

#### 4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.



#### 2024-25 Construction Start

Ready for full construction and main tunnel excavation.

#### **Construction Phase**

Stage 1 construction of CLIC, in parallel with detector construction.

Preparation for implementation of further stages.



Commissioning Becoming ready for datataking as the LHC programme reaches completion.

### **CLIC two-beam acceleration scheme**

Two Beam Scheme:





~1 km

## CLIC layout at 3 TeV





Fig. 3.1: Overview of the CLIC layout at  $\sqrt{s} = 3$  TeV.

### **CLIC** machine environment



|                                       | CLIC at 3 TeV        |                      |  |  |
|---------------------------------------|----------------------|----------------------|--|--|
| L (cm <sup>-2</sup> s <sup>-1</sup> ) | 5.9×10 <sup>34</sup> |                      |  |  |
| BX separation                         | 0.5 ns               | Crives timing        |  |  |
| #BX / train                           | 312                  | requirement          |  |  |
| Train duration (ns)                   | 156                  | for CLIC dete        |  |  |
| Rep. rate                             | 50 Hz                |                      |  |  |
| Duty cycle                            | 0.00078%             |                      |  |  |
| σ <sub>x</sub> / σ <sub>y</sub> (nm)  | ≈ 45 / 1             | very small beam size |  |  |
| σ <sub>z</sub> (μm)                   | 44                   | very small Deam size |  |  |



- 1 train = 312 bunches, 0.5 ns apart
- not to scale -

Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014

# **CLIC** machine environment







Lucie Linssen, CLIC BSM physics, PANIC

# background suppression at CLIC





• Allows to protect high- $p_T$  physics objects

### ╋

#### • Use well-adapted jet clustering algorithms

• Making use of LHC experience (FastJet)

## combined $p_T$ and timing cuts





### $e^+e^- \rightarrow H^+H^- \rightarrow t\bar{b}b\bar{t} \rightarrow 8 \text{ jets}$

1.2 TeV background in reconstruction time window

100 GeV background after tight cuts

## **PFO-based timing cuts**



| Region                   | p <sub>t</sub> range                     | Time cut     |  |  |  |  |  |
|--------------------------|------------------------------------------|--------------|--|--|--|--|--|
|                          | Photons                                  |              |  |  |  |  |  |
| central                  | $0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$   | t < 2.0 nsec |  |  |  |  |  |
| $(\cos\theta \le 0.975)$ | $0~{ m GeV} \le p_t < 0.75~{ m GeV}$     | t < 1.0 nsec |  |  |  |  |  |
| forward                  | $0.75 { m ~GeV} \le p_t < 4.0 { m ~GeV}$ | t < 2.0 nsec |  |  |  |  |  |
| $(\cos \theta > 0.975)$  | $0~{ m GeV} \le p_t < 0.75~{ m GeV}$     | t < 1.0 nsec |  |  |  |  |  |
|                          | Neutral hadrons                          |              |  |  |  |  |  |
| central                  | $0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$   | t < 2.5 nsec |  |  |  |  |  |
| $(\cos\theta \le 0.975)$ | $0~{ m GeV} \le p_t < 0.75~{ m GeV}$     | t < 1.5 nsec |  |  |  |  |  |
| forward                  | $0.75~{ m GeV} \le p_t < 8.0~{ m GeV}$   | t < 2.0 nsec |  |  |  |  |  |
| $(\cos \theta > 0.975)$  | $0~{ m GeV} \le p_t < 0.75~{ m GeV}$     | t < 1.0 nsec |  |  |  |  |  |
| Charged PFOs             |                                          |              |  |  |  |  |  |
| all                      | $0.75~{ m GeV} \le p_t < 4.0~{ m GeV}$   | t < 3.0 nsec |  |  |  |  |  |
|                          | $0~{ m GeV} \le p_t < 0.75~{ m GeV}$     | t < 1.5 nsec |  |  |  |  |  |

## **Integrated luminosity**



#### Possible scenarios "A" and "B", these are "just examples"



Fig. 5.2: Integrated luminosity in the scenarios optimised for luminosity in the first energy stage (left) and optimised for entry costs (right). Years are counted from the start of beam commissioning. These figures include luminosity ramp-up of four years (5%, 25%, 50%, 75%) in the first stage and two years (25%, 50%) in subsequent stages.

Based on 200 days/year at 50% efficiency (accelerator + data taking combined)

#### => CLIC can provide an evolving and rich physics program over several decades



Lucie Linssen, CLIC BSM physics, PANIC Hamburg, 28/8/2014

# Summary of Higgs measurements



|                           | Statistical precision                                                                                                                  |                                                      |                                 |                                 |                                 |                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|
| Channel                   | Measurement                                                                                                                            | Observable                                           | 350 GeV<br>500 fb <sup>-1</sup> | 1.4 TeV<br>1.5 ab <sup>-1</sup> | 3.0 TeV<br>2.0 ab <sup>-1</sup> | Summary of CLIC Higgs                  |
| ZH                        | Recoil mass distribution                                                                                                               | m <sub>H</sub>                                       | 120 MeV                         | _                               | -                               | bonchmark simulations                  |
| ZH                        | $\sigma(HZ) \times BR(H \rightarrow invisible)$                                                                                        | $\Gamma_{inv}$                                       | 0.6%                            | _                               | _                               |                                        |
| ZH                        | $H \rightarrow b\overline{b}$ mass distribution                                                                                        | m <sub>H</sub>                                       | tbd                             | -                               | -                               |                                        |
| $Hv_e\overline{v}_e$      | $H \rightarrow b\overline{b}$ mass distribution                                                                                        | m <sub>H</sub>                                       | _                               | 40 MeV*                         | 33 MeV*                         | http://arxiv.org/abs/1307.5288         |
| ZH                        | $\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{Z} \to \ell^+ \ell^-)$                                                                 | $g^2_{\rm HZZ}$                                      | 4.2%                            | -                               | _                               | -                                      |
| ZH                        | $\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \mathrm{q}\overline{\mathrm{q}})$                                                        | $g^2_{HZZ}$                                          | 1.8%                            | -                               | _                               |                                        |
| ZH                        | $\sigma(\text{HZ}) \times BR(\text{H} \rightarrow \text{b}\overline{\text{b}})$                                                        | $g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$       | $1\%^{\dagger}$                 | -                               | -                               |                                        |
| ZH                        | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$                                                | $g_{\rm HZZ}^2 g_{\rm Hcc}^2 / \Gamma_{\rm H}$       | 5% <sup>†</sup>                 | -                               | _                               |                                        |
| ZH                        | $\sigma(HZ) \times BR(H \rightarrow gg)$                                                                                               |                                                      | $6\%^{\dagger}$                 | _                               | _                               |                                        |
| ZH                        | $\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \tau^+ \tau^-)$                                                                 | $g_{\rm HZZ}^2 g_{\rm H\tau\tau}^2 / \Gamma_{\rm H}$ | 5.7%                            | _                               | _                               |                                        |
| ZH                        | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$                                                                          | $g^2_{ m HZZ} g^2_{ m HWW}/\Gamma_{ m H}$            | 2% <sup>†</sup>                 | _                               | -                               | $\mathbf{\wedge}$                      |
| ZH                        | $\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$                                                                          | $g_{\rm HZZ}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$       | tbd                             | _                               | _                               |                                        |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}})$ | $g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$             | 3%†                             | 0.3%                            | 0.2%                            | No.                                    |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{c}\overline{\mathrm{c}})$ | $g_{\rm HWW}^2 g_{\rm Hec}^2 / \Gamma_{\rm H}$       | -                               | 2.9%                            | 2.7%                            | The is                                 |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{gg})$                     |                                                      | _                               | 1.8%                            | 1.8%                            | 17 p.                                  |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv_e}\overline{\mathrm{v}_e}) \times BR(\mathrm{H} \rightarrow \tau^+ \tau^-)$                                         | $g^2_{ m HWW} g^2_{ m H\tau\tau}/\Gamma_{ m H}$      | _                               | 3.7%*                           | tbd                             | NTO0                                   |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mu^{+}\mu^{-})$                  | $g^2_{\rm HWW} g^2_{\rm H\mu\mu} / \Gamma_{\rm H}$   | _                               | 38%                             | 16%                             | ore                                    |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \gamma\gamma)$                    |                                                      | _                               | 15%                             | tbd                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{Z}\gamma)$                |                                                      | -                               | 42%                             | tbd                             |                                        |
| $Hv_e \overline{v}_e$     | $\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \rightarrow \mathrm{WW}^{*})$                 | $g_{ m HWW}^4/\Gamma_{ m H}$                         | 🔵 tbd                           | $1.1\%^{*}$                     | $0.8\%^{*}$                     | *                                      |
| $Hv_e\overline{v}_e$      | $\sigma(Hv_e \overline{v}_e) \times BR(H \rightarrow ZZ^*)$                                                                            | $g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$       | _                               | 3%†                             | $2\%^\dagger$                   |                                        |
| $He^+e^-$                 | $\sigma({\rm He^+e^-}) \times {\it BR}({\rm H} \rightarrow {\rm b}\overline{\rm b})$                                                   | $g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$            | -                               | $1\%^{\dagger}$                 | $0.7\%^{\dagger}$               |                                        |
| tīH                       | $\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$                                                                                  | $g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$          | -                               | 8%                              | tbd                             | -                                      |
| $HHv_e\overline{v}_e$     | $\sigma(HHv_e\overline{v}_e)$                                                                                                          | <b><i>g</i></b> HHWW                                 | _                               | $7\%^{*}$                       | 3%*                             |                                        |
| $HHv_e \overline{v}_e$    | $\sigma(HHv_e \overline{v}_e)$                                                                                                         | λ                                                    | _                               | 32%                             | 16%                             |                                        |
| $HH\nu_e\overline{\nu}_e$ | with $-80\% e^-$ polarization                                                                                                          | λ                                                    | -                               | 24%                             | 12%                             | * Preliminary<br>2014 stimate 28       |

# CLIC Higgs global fits Work in progress !

#### Model-independent global fits ×

#### 80% electron polarisation assumed above 1 TeV

| Parameter            | Measurement precision |                        |                        |  |  |  |
|----------------------|-----------------------|------------------------|------------------------|--|--|--|
|                      | 350 GeV               | + 1.4 TeV              | +3.0 TeV               |  |  |  |
|                      | $500  {\rm fb}^{-1}$  | $+1.5 \text{ ab}^{-1}$ | $+2.0 \text{ ab}^{-1}$ |  |  |  |
| m <sub>H</sub>       | 120 MeV               | 30 MeV                 | 20 MeV                 |  |  |  |
| λ                    | _                     | 24%                    | 11%                    |  |  |  |
| Γ <sub>H</sub> [%]   | 5.0                   | 3.6                    | 3.4                    |  |  |  |
| 8HZZ [%]             | 0.8                   | 0.8                    | 0.8                    |  |  |  |
| ghww [%]             | 1.8                   | 0.9                    | 0.9                    |  |  |  |
| g <sub>Hbb</sub> [%] | 2.0                   | 1.0                    | 0.9                    |  |  |  |
| g <sub>Hcc</sub> [%] | 3.2                   | 1.4                    | 1.1                    |  |  |  |
| g <sub>Htt</sub> [%] | _                     | 4.1                    | 4.1                    |  |  |  |
| g <sub>Htt</sub> [%] | 3.5                   | 1.6                    | < 1.5                  |  |  |  |
| <i>8</i> нµµ [%]     | _                     | 14                     | 5.6                    |  |  |  |
| g <sub>Hgg</sub> [%] | 3.6                   | 1.1                    | 1.0                    |  |  |  |
| g <sub>Нүү</sub> [%] | _                     | <u>5.7</u>             | < 5.7                  |  |  |  |

- ~1 % precision on many couplings
  - limited by g<sub>HZZ</sub> precision

- Constrained "LHC-style" fits
  - Assuming no invisible Higgs decays (model-dependent):

$$\kappa_i^2 = rac{\Gamma_i}{\Gamma_i|_{\mathrm{SM}}} \qquad \Gamma_{\mathrm{H,md}} = \sum_i \kappa_i^2 BR_i$$

| Parameter                        | Measurement precision           |                                    |                                   |  |
|----------------------------------|---------------------------------|------------------------------------|-----------------------------------|--|
|                                  | 350 GeV<br>500 fb <sup>-1</sup> | + 1.4 TeV<br>+1.5 ab <sup>-1</sup> | +3.0 TeV<br>+2.0 ab <sup>-1</sup> |  |
| $\Gamma_{\rm H,model}$ [%]       | 1.6                             | 0.29                               | 0.22                              |  |
| $\kappa_{\rm HZZ}$ [%]           | 0.43                            | 0.31                               | 0.23                              |  |
| к <sub>нww</sub> [%]             | 1.5                             | 0.15                               | 0.11                              |  |
| к <sub>ньь</sub> [%]             | 1.7                             | 0.33                               | 0.21                              |  |
| к <sub>Нtt</sub> [%]             | 3.1                             | 1.0                                | 0.74                              |  |
| κ <sub>Ηττ</sub> [%]             | 3.4                             | 1.3                                | < 1.3                             |  |
| к <sub>Нgg</sub> [%]             | 3.6                             | 0.76                               | 0.56                              |  |
| $\kappa_{\rm H\gamma\gamma}$ [%] | _                               | 5.6                                | < 5.6                             |  |

★ sub-% precision for most couplings

### **CLIC and FCC**



CERN-hosted design studies at the high-energy frontier

