

Amplitude Method – summary results Veta GHENESCU, Titi PREDA

Institute of Space Science, Bucharest, ROMANIA

23th FCAL Workshop | 7 – 8 October 2013

Outline

- ✓ Test Beam set-up
- ✓ Amplitude Method
 - Amplitude algorithm
 - Signal candidates
 - MPV uniformity in space&time
 - Signal to noise ratio
- ✓ Edge effects:
 - Track reconstruction
 - Induced signal in neighboring pads
 - Results
- ✓ Shower analysis
 - Longitudinal & transversal evolution of showers
- ✓ Conclusions

- DESY II Synchrotron provide electrons with up to 1000 particles per cm² and second, energies from 1 to 6 GeV;
- Test Beam took place in beam line 22 of DESY II ring in Hamburg, from 04.11.2011 to 22.11.2011;
- Used 2GeV or 4 GeV electron beams;

 $t = [2X_0 \div 14X_0];$

step = $2X_0$

- ZEUS telescope planes (1, 2, 3):
 - Si planes: 300 μm thick
 - Active area: 32 x 32mm²
 - Double perpendicular layers,
 - 640 strip channels (50µm)
- > Trigger scintillators (4,5) :
 - Trigger window: 7 x 7mm²
- BeamCal Sensor (6)
 - GaAs:Cr sensor

23th FCAL Workshop | 7 – 8 October 2013

Amplitude method (MAX)

1. Data

At each trigger the ADC counts stored in a matrix $A = ||A_{i,j}||, i \in [0, 31], j \in [0, 31]$

2. Amplitude method finds for every pad (channel) the maximum of ADC counts for $j \in [20, 31]$

 $Amax_i = MAX(A_{i,20}, ..., A_{i,31}) \longrightarrow Amax_i = A_{i,smax}$, where smax represents the sample corresponding to $Amax_i$

3. Pedestals are computed for every run and every pad (channel) in the sample interval $j \in [0,19]$ Pedestal values are the mean values, P_i , of the $f_i(A_{i,0}, ..., A_{i,19})$ distributions which have the RMS_i values

$$f_i(A_{i,0}, \dots, A_{i,19}) = f_{i,0}(A_{i,0}) \times \dots \times f_{i,19}(A_{i,19})$$
, where $i \in [0, 31]$

ISS

Amplitude method (MAX)

1. The maximum count has to satisfy:

$$Amax_i \ge P_i + coef \times RMS_i$$
, we used $coef = 3$ (1)

2. At least one of the nearest samples has the count:

$$A_{i,smax-1} \text{ or } A_{i,smax+1} \ge P(i) + coef \times RMS_i$$
 (2)

The Signal Amplitude is:

$$S_i = Amax_i - P_i$$

23th FCAL Workshop | 7 – 8 October 2013

23th FCAL Workshop | 7 – 8 October 2013

²³th FCAL Workshop | 7 – 8 October 2013

Track reconstruction method

- DigXs and DigYs coordinates have been took for all telescope planes;
- Hits number/plane = $1 \rightarrow$ one EM shower/event

where:

• (X_{im},Y_{im}) = measured coordinates or given coordinates by TelAna, *i* € [1, 3];

•
$$(X_{im}, Y_{im}) = (DigXs, DigYs);$$

• (X_{ip}, Y_{ip}) = predicted coordinates given by line intersection with each telescope plane

$$Min (d^{2}) = Min\left(\sum_{i=1}^{3} \left(\left(x_{ip} - x_{im} \right)^{2} + \left(y_{ip} - y_{im} \right)^{2} \right) \right)$$

Track reconstruction method

Spatial resolution:

ollaboration recision design

- Sigma from fits are smaller than about $30\mu m$
- The Si chamber alignment was make with a maximum 100 µm shift

ollaboration recision design

The energy deposited dependence by tungsten radiation lengths for experimental data

Shower analysis

23th FCAL Workshop | 7 – 8 October 2013

Conclusions

In the paper could be included:

- Amplitude method
 - Algorithm
 - Results (uniformity, S/N)
- Edge effect
 - Track reconstruction
 - Results

