# Minimal Supersymmetric Higgs Search at CMS

**Determining the Optimal Control Region using MVA** 

Ewen L. Gillies DESY Zeuthen, 22/8/2013





## **MSSM** at the CMS Detector: The Basics

#### MSSM = Minimal SuperSymmetric Model

- Predicts "super partners" for all fundamental
- Bosons  $\leftarrow \rightarrow$  Bosinos
- Fermions  $\leftarrow \rightarrow$  Sfermions

#### > Higgs Field

MSSM demands two Higgs complex doublet fields:

$$H_{u} = \left( \begin{array}{cc} H_{u}^{+} & H_{u}^{0} \end{array} \right); \qquad \qquad H_{d} = \left( \begin{array}{cc} H_{d}^{0} & H_{d}^{-} \end{array} \right)$$

Results in three neutral Higgs: A<sup>0</sup> h<sup>0</sup> H<sup>0</sup>



# **Event Tagging and Cut Selection**

- > Characteristics of b-hadrons decays
  - Long lived hadrons yielding distinct primary and secondary vertices.
  - Lots of semileptonic decays →
    Missing transverse p



- CMS is looking for energy resonance resulting from more than one neutral Higgs
- > Pre-selections
  - Only look at channels with at least three b-tagged jets
  - Combined Secondary Vertex (CVS) > 0.898 [ = 1 for b-jet]
  - Medium mass scenario:  $180 \text{ GeV} < M_{\phi} < 350 \text{ GeV}$





## **Using TMVA in Control Regions**

- Motivation: Determine control region for blinding
- Soal: Determine optimal control regions and cuts (in phase space)
  - Control Region = background to signal ratio maximised
  - Optimal Cuts = Signal and background separation
  - Automate this process in TMVA
- TMVA: Toolkit for MultiVariate Analysis in ROOT
  - Optimization software
  - Classification techniques
- Method: Boosted Decision Trees in TMVA
- My Project: Check the results of the automated process
  - Adjust input settings in classification analysis
  - Compare S/B ratio and purity



## **Classification**

- > Used to determine optimal cut region
  - Creates a discriminating function between background and signal
  - Input variables are final state kinematics
  - Output is MVA metric: [-1,1]
  - Goal: Maximum separation in distribution

#### > Two step process

- Training: Maps functional dependence to classifier
- Testing: Iterates classifier form on remainder of sample or new sample
- Samples for each must be statistically independent



 $\mathbf{X}_2$ 



## **Kinematic Variables**

> Events described by final state kinematics

- Jet Transverse Momenta : Pt1, Pt2, Pt3
- Number of Constituent Jets
- Total Energy: sumEt
- Jet Transverse Energy Ratios: Et3byEt1
- Usually select
  ~10 in multivariable cut analysis





# **Decision Tree Training**

- Training done with Monte Carlo data
- Root node is cut by
  - Best variable
  - Optimal Value
- Process is repeated on resulting node
  - Never backtracks
  - Iterates until nodes reach minimal event content
- Leafs are classified as background or signal





## **Decision Tree Training: Nodes and Cuts**

- Node Properties
  - Number of events

Purity of events: 
$$p = \frac{S}{S+B}$$

- Cutting Method
  - At each node, TMVA determines best variable to cut on, and best value
  - Scans with preset granularity
- Separation Index
  - Metric with maximum at 0.5
  - *p, 1-p* symmetric
  - Examples:

Gini Index:  $s = p \cdot (1-p)$ Cross Entropy:  $s = -p \cdot \ln(p) - (1-p) \cdot \ln(1-p)$ 





## **Decision Tree Training: Boosting**

- > Adaptive Boosting: "Averaging process"
  - Used to stabilize BDT classifier against fluctuations in input variables
- > Train many decision trees
  - Uses a weighted resample of data
  - Subsequent re-samples give higher weights, α, to misclassified events

$$err = \frac{misclassified}{total}; \quad \alpha = \frac{1 - err}{err}$$

- Results in classification "forest"
  - Pro: Better separtion power, more stable
  - Con: Lose simplicity of single tree



#### **Decision Tree Testing**

> Testing sample now run through "forrest"

- Each tree gives each event a value of h(x) = +1 (signal) or h(x) = -1 (background)
- Adaptive boosting yields the following classification

$$y_{ada} = \frac{1}{NTrees} \sum_{i=1}^{NTrees} \ln(\alpha_i) \bullet h_i(x)$$

Ideal Plot







# **Current Progress**

#### Cuts

- Very Tight: *mva* < 0.45</p>
- Tight: mva < 0.25</p>
- Loose: *mva* < 0.0

#### > Key

- Red = Signal
- Magenta = General QCD
- Green = QCD as sum of two bins (50-100 GeV, 100-250 GeV)
- Black = Data
- > Working to isolate control region





# **Suppression of Signal in Cut Region**

#### Results:

- Suppression of signal in di-jet mass distribution
- Background more or less unaffected







Questions?



# Summary



## **Regression Analysis Method**

- > Step 1: Select a target
  - GenP<sub>t</sub><sup>\*</sup> = Event Generator DetectedP<sub>t</sub><sup>\*</sup> = Detector Simulation DetectedP<sub>t</sub> = Experiment P<sub>t</sub> = Result!

$$y = \frac{GenP_t^*}{DetectedP_t^*} \approx \frac{P_t}{DetectedP_t}$$

Step 2: Use half of sample to map this target's function dependence on a list of variables

$$y = f(x_1, x_2, x_3...)$$

Step 3: Use other half to calculate P<sub>t</sub>  $y \bullet DetectedP_t = P_t$ 

KEY: Can use functional dependence to **limit sample** to region where generation/simulation is closest to reality/data.

$$\frac{GenP_t^*}{DetectedP_t^*} - \frac{P_t}{DetectedP_t} = \Delta = smallest$$

## **The Good Plot**



Not Final: Work in Progress

DESY

## **The Bad Plot**



Not Final: Work in Progress

DESY