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MSSM at the CMS Detector: The Basics

> MSSM = Minimal SuperSymmetric Model

= Predicts “super partners” for all fundamental
= Bosons <->  Bosinos

= Fermions <> Sfermions

> Higgs Field
= MSSM demands two Higgs complex doublet fields:

me{wow me(m )

= Results in three neutral Higgs: A% h® HO
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Event Tagging and Cut Selection

> Characteristics of b-hadrons decays tanB

= Long lived hadrons yielding distinct primary and
secondary vertices.

= Lots of semileptonic decays -
Missing transverse p

g b

> CMS is looking for energy resonance resulting from more than one
neutral Higgs

Displaced
cks

> Pre-selections

Secondary
Vertex

= Only look at channels with at least three b-tagged jets &
= Combined Secondary Vertex (CVS) > 0.898 [ = 1 for b-jet]
= Medium mass scenario: 180 GeV <M, <350 GeV
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Using TMVA in Control Regions

> Motivation: Determine control region for blinding

> Goal: Determine optimal control regions and cuts (in phase space)

= Control Region = background to signal ratio maximised
= Optimal Cuts = Signal and background separation

= Automate this process in TMVA
> TMVA: Toolkit for MultiVariate Analysis in ROOT

= Optimization software

= Classification techniques

> Method: Boosted Decision Trees in TMVA

> My Project: Check the results of the automated process

= Adjust input settings in classification analysis
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= Compare S/B ratio and purity



Classification

> Used to determine optimal cut region

= Creates a discriminating function between background
and signal

= Input variables are final state kinematics
= Qutput is MVA metric: [-1,1]

= Goal: Maximum separation in distribution

> Two step process

= Training: Maps functional dependence to classifier

= Testing: lterates classifier form on remainder
of sample or new sample

= Samples for each must be statistically independent

B
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Kinematic Variables

> Events described by final state kinematics

= Jet Transverse Momenta : Pt1, Pt2, Pt3

= Number of Constituent Jets
= Total Energy: sumEt

= Jet Transverse Energy
Ratios: Et3byEt1

> Usually select
~10 in multivariable cut
analysis
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Decision Tree Training

> Training done with Monte Carlo data

> Root node is cut by

= Best variable

= Optimal Value

> Process is repeated on

resulting node

= Never backtracks

= |terates until nodes
reach minimal event
content

> Leafs are classified
as background or
signal

yes JetEt < 57.5 no

‘ pT < 40.7

l Eta<0.5

Et2 <20.3

Et3 <34.6

Et3/Et2 < 0.6

JetEt < 45
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Decision Tree Training: Nodes and Cuts

> Node Properties

= Number of events

= Purity of events:

> Cutting Method

= At each node, TMVA determines best
variable to cut on, and best value

p=S+B

= Scans with preset granularity

> Separation Index

= Metric with maximum at 0.5

= p, 1-p symmetric
= Examples:

Gini Index:;

s=pe(l-p)

p=0.5
1000 Events
s =0.25
| |
p=0.9
550 Events
s =0.09
s,, = 0.0495
S

0.29¢

p=0.01
450 Events

s =0.01
s,, = 0.005

0.25 o

028

Cross Entropy: s =—peIn(p)-(1-p)*In(l-p)
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Decision Tree Training: Boosting

> Adaptive Boosting: “Averaging process”
= Used to stabilize BDT classifier against fluctuations in input variables
> Train many decision trees

= Uses a weighted resample of data
= Subsequent re-samples give higher weights, a, to misclassified events
misclassified o < 1-err

total ’ err

err =

> Results in classification “forest”

= Pro: Better separtion power, more stable

= Con: Lose simplicity of single tree
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Decision Tree Testing

> Testing sample now run through “forrest”

= Each tree gives each event a value of h(x) = +1 (signal) or h(x) = -1 (background)

= Adaptive boosting yields the following classification

1 NTrees
yada = E ln(ai) ¢ hi (x)
NTrees “
Ideal Plot
| TMVA overtraining check for classifier: BDT |
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Current Progress

Actual Analysis

> Cuts e O
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> Working to isolate control region
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Suppression of Signal in Cut Region

> Results:

= Suppression of signal in di-jet mass distribution

= Background more or less unaffected
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Et Voila

Questions?
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Regression Analysis Method

> Step 1: Select a target

&
= GenP, = Event Generator y= Genpt ~ Pt
DetectedP, = Detector Simulation DetectedP * DetectedP
DetectedP, = Experiment ! !
P, = Result!

> Step 2: Use half of sample to map y= f(x X,,X )
this target’s function dependence P
on a list of variables

> Step 3: Use other half y® DetectedP. = P
to calculate P,

KEY: Can use functional dependence to limit sample to region where
generation/simulation is closest to reality/data.

o
GenP, £ = A = smallest

DetectedP, * ) DetectedP,
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The Good Plot

Output deviation for method: MVA_BDTG (test sample) @
-~ TMVA
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The Bad Plot

Output deviation for method: MVA_BDTG (test sample) 0
-~ TMVA
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