Summer Student Presentation.

Simulation studies for the total decay width of the Higgs Boson at the International Linear Collider

Tom Hadavizadeh th390@cam.ac.uk Supervisor: Claude Fabienne Dürig

FLC Group DESY Hamburg, Germany University of Cambridge United Kingdom

Table of Contents.

1 Introduction

2 Theory

3 Determination of Γ_H^{tot} Precision

<ロ > < 部 > < 言 > < 言 > こ き く こ > こ の Q (~ 2/19

International Linear Collider.

- The International Linear Collider will be 31 km long.
- Runs at $\sqrt{s} = 500 GeV$ with possible upgrade to 1 TeV
- Two detectors: ILD and SiD
- Designed to make precision measurements
- Produces spin polarised beams

Aim: Explore how accurately the Γ_H^{tot} can be measured at the ILC

- Interested in full simulation at $\sqrt{s} = 500$ GeV and $\mathcal{L} = 500 \mbox{fb}^{-1}$
- Use the WW fusion as signal process $e^+e^-
 ightarrow H
 u_e ar
 u_e$

Previously a fast simulation was carried out for $m_H = 120 {\rm GeV}$ and $\sqrt{s} = 500 \, {\rm GeV}/350 \, {\rm GeV}$

Niels Meyers: Higgs-Bosons At TESLA: Studies On Production In WW-Fusion And Total Decay Width

4/19

The Higgs Mechanism results in *spontaneous symmetry breaking*. For real scalar field ϕ ,

Re(6)

$$\mathcal{L} = \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} \mu^2 \phi^2 - \frac{1}{4} \lambda \phi^4$$

when $\mu^2 < 0$ we get non-zero minima

$$\phi = \pm \sqrt{-\frac{\mu^2}{\lambda}}$$

This gives vacuum expectation value.

Field ϕ can be written in terms of h, real scalar field: Higgs Boson, $\langle \cdot \rangle$

- Decay width of Higgs much for small masses is smaller than experiment resolution
 - $\Gamma_H^{tot} \sim 5 \text{ MeV}$
 - Must be determined indirectly

ZZ fusion also possible but suppressed by weak mixing angle

I have calculated the cross section for WW-fusion events and Higgs-Strahlung using *Whizard* as a function of \sqrt{s} for two different beam polarisations:

- WW fusion dominates at $\sqrt{s} = 500$ GeV, Higgs Strahlung dominates at lower energy

I have used just WW-fusion as the signal for this simulation

- I have used just WW-fusion as the signal for this simulation
- Measurement of $\sigma_{wwfusion}$ allows Γ_{H}^{tot} to be determined:

 $\Gamma(H
ightarrow WW) \propto g^2_{HWW} ~~\sigma_{wwfusion} \propto g^2_{HWW}$

- I have used just WW-fusion as the signal for this simulation
- Measurement of $\sigma_{wwfusion}$ allows Γ_H^{tot} to be determined:

Therefore

$$\Gamma_{H}^{tot} = \frac{\Gamma(H \to WW)}{BR(H \to WW)} \propto \frac{\sigma_{WWfusion}}{BR(H \to WW)}$$

- I have used just WW-fusion as the signal for this simulation
- Measurement of σ_{wwfusion} allows Γ^{tot}_H to be determined:

Therefore

$$\Gamma_{H}^{tot} = \frac{\Gamma(H \rightarrow WW)}{BR(H \rightarrow WW)} \propto \frac{\sigma_{WWfusion}}{BR(H \rightarrow WW)}$$

For $m_H = 125$ GeV the decay $H \rightarrow b\bar{b}$ is largest

$$\sigma_{WWfusion} = \frac{N'_{WW}}{\epsilon \cdot \mathcal{L}}$$

10/19

International Large Detector (ILD).

Full simulation of ILD

- $\sqrt{s} = 500 \text{ GeV}$ and $\mathcal{L} = 500 \text{ fb}^{-1}$
- Simulations generate Monte Carlo data sets
- Takes into account detector design

・ロ・ ・ 日・ ・ ヨ・ ・ ヨ・

Signal and Background Processes.

Signal: $e^+e^- \rightarrow H\nu_e\bar{\nu_e} \rightarrow b\bar{b}\nu_e\bar{\nu_e}$

• Total number of WW fusion events is $N_{wwfusion} = 7.6 \times 10^4$.

Signal and Background Processes.

Signal:

$$e^+e^-
ightarrow H
u_e ar{
u_e}
ightarrow bar{b}
u_e ar{
u_e}$$

• Total number of WW fusion events is $N_{wwfusion} = 7.6 \times 10^4$.

Background:

Туре	Decay	Nevents
Semileptonic	$W^+W^- o u_\ell \ell^\pm qar q$	2,785,120
Hadronic	$W^+W^- o qar q qar q$	2,245,500
Semileptonic	$ZZ ightarrow \ell ar{\ell} q ar{q}$	182,999
Hadronic	ZZ ightarrow q ar q q ar q	203,310
Semileptonic	$W^{\mp} e^{\pm} u_e ightarrow e^{\pm} u_e q ar q$	2,283,520
Semileptonic	$Z e^+ e^- ightarrow q ar q e^- e^+$	603,845
Hadronic	Z ightarrow q ar q	9,805,180
Semileptonic	$Z u ar{ u} ightarrow q ar{q} u ar{ u}$	279,408

- Total no. of background events is $N_{Background} = 1.8 \times 10^7$.
- Total no. of Higgs Strahlung events is $N_{HiggsStrahlung} = 1.0 \times 10^4$.

Event Selection and Cuts.

Name	Cut	
Isolated lepton removal	No. isolated lep ≤ 1	
Visible mass	$105 \; { m GeV} \le m_{\it vis} \le 135 \; { m GeV}$	
Visible energy	$105 \text{ GeV} \leq E_{vis} \leq 255 \text{ GeV}$	
Visible P _t	$5 \text{ GeV} \leq \sum P_T \leq 200 \text{ GeV}$	
Polar angle of jet	$ \cos heta_{Jet} \le 0.9$	
Angle between jets	$\coslpha \leq 0.2$	
Acoplanarity	$Acop \geq 10^\circ$	
Durham, Y_{12} (minus)	$0.2 \le Y_{12} \le 0.8$	
b-tagging	$b\text{-}tag \geq 0.5$	
Number of tracks	$10 \le N \le 60$	

12/19

(日) (部) (注) (注) (注) (

Event Selection and Cuts.

1

Name	Cut	
Isolated lepton removal	No. isolated lep ≤ 1	
Visible mass	$105 { m GeV} \le m_{\it vis} \le 135 { m GeV}$	
Visible energy	105 GeV $\leq E_{vis} \leq$ 255 GeV	
Visible P_t	$5 \text{ GeV} \leq \sum P_T \leq 200 \text{ GeV}$	
Polar angle of jet	$ \cos heta_{Jet} \le 0.9$	
Angle between jets	$\coslpha \leq 0.2$	
Acoplanarity	$Acop \geq 10^\circ$	
Durham, Y ₁₂ (minus)	$0.2 \le Y_{12} \le 0.8$	
b-tagging	b-tag ≥ 0.5	
Number of tracks	$10 \le N \le 60$	

12/19

Background and Signal Distributions.

The distribution of the visible mass, m_{vis}, before any cuts are applied

$$m_{vis} = \sqrt{E_{vis}^2 - |\mathbf{p}_{vis}|^2}$$

Background: $m_{vis} \approx m_Z$ or m_W

WW fusion/Higgs Strahlung: $m_{vis} \approx m_H$

Missing Mass Distribution.

$$m_{mis}=\sqrt{E_{mis}^2-|\mathbf{p}_{mis}|^2}$$

$$\mathbf{p}_{\textit{mis}} = -\mathbf{p}_{\textit{vis}}$$
 and $\textit{E}_{\textit{mis}} = \sqrt{s} - \textit{E}_{\textit{vis}}$

We expect different characteristics for the $\nu \bar{\nu}$ invariant mass:

Higgs Strahlung: $m_{mis} \approx m_Z$ **WW fusion:** Higher peak

14/19

() < </p>

Missing Mass After Cuts.

After cuts have been applied:

Background affected by low statistics

Low m_{mis} missing due to Y₁₂ cut

() < </p>

Missing Mass Fit.

Missing Mass Fit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Missing Mass Fit.

$$\chi^2 = \sum_{i}^{Nbins} \left(rac{N_{MCdata,i} - N_{pred,i}}{\sigma_{MCdata,i}}
ight)^2$$

16/19

・ロト ・回ト ・ヨト ・ヨト

Comparison.

N _{WWFusion}	3421 ± 75	8181 ± 98	8049 ± 160
N _{HiggsStrahlung}	3192 ± 83	229 ± 21	101 ± 124
NBackground	363 ± 88	348 ± 38	340 ± 39

*first two from Niels Meyers: Higgs-Bosons At TESLA (2000)

• The fit gives us the value $\left(\frac{\Delta N'_{WW}}{N'_{WW}}
ight) = 1.99\%$

$$\left(\frac{\Delta\sigma_{WWfusion}}{\sigma_{WWfusion}}\right) = \sqrt{\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to b\bar{b})}{BR(H \to b\bar{b})}\right)^2} = 2.48\%$$

18/19

• The fit gives us the value $\left(rac{\Delta N'_{WW}}{N'_{WW}}
ight)=1.99\%$

$$\left(\frac{\Delta\sigma_{WWfusion}}{\sigma_{WWfusion}}\right) = \sqrt{\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to b\bar{b})}{BR(H \to b\bar{b})}\right)^2} = 2.48\%$$

$$\left(\frac{\Delta\Gamma_{H}^{\text{tot}}}{\Gamma_{H}^{\text{tot}}}\right) = \sqrt{\left(\frac{\Delta\sigma_{WW}}{\sigma_{WW}}\right)^{2} + \left(\frac{\Delta BR(H \to WW)}{BR(H \to WW)}\right)^{2}} = 2.8\%$$

• The fit gives us the value $\left(\frac{\Delta N'_{VWV}}{N'_{WW}}\right) = 1.99\%$

$$\left(\frac{\Delta\sigma_{WWfusion}}{\sigma_{WWfusion}}\right) = \sqrt{\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to b\bar{b})}{BR(H \to b\bar{b})}\right)^2} = 2.48\%$$

$$\left(\frac{\Delta\Gamma_{H}^{tot}}{\Gamma_{H}^{tot}}\right) = \sqrt{\left(\frac{\Delta\sigma_{WW}}{\sigma_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to WW)}{BR(H \to WW)}\right)^2} = 2.8\%$$

The uncertainties for the branching ratios come from previous studies

• The fit gives us the value $\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right) = 1.99\%$

$$\begin{pmatrix} \frac{\Delta\sigma_{WWfusion}}{\sigma_{WWfusion}} \end{pmatrix} = \sqrt{\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to b\bar{b})}{BR(H \to b\bar{b})}\right)^2} = 2.48\%$$

$$\begin{pmatrix} \frac{\Delta\Gamma_{H}^{tot}}{\Gamma_{H}^{tot}} \end{pmatrix} = \sqrt{\left(\frac{\Delta\sigma_{WW}}{\sigma_{WW}}\right)^2 + \left(\frac{\Delta BR(H \to WW)}{BR(H \to WW)}\right)^2} = 2.8\%$$

The uncertainties for the branching ratios come from previous studies

Fast simulation found
$$\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right) = 1.2\%$$
 for $m_H = 120$ GeV and $\left(\frac{\Delta N'_{WW}}{N'_{WW}}\right) = 2.4\%$ for $m_H = 130$ GeV

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- Conducted full simulation of Γ_H^{tot} at $\sqrt{s} = 500 \text{ GeV}$
- Used selection cuts to keep WW fusion events
- Generated toy MC data and fitted data
- Propagated uncertainty using branching ratio uncertainties

- **a** Calculated overall uncertainty to be $\left(\frac{\Delta\Gamma_{H}^{tot}}{\Gamma_{H}^{tot}}\right) = 2.8\%$
- Result consistent with previous analysis