DESY Summer Student 2013

ATLAS FE-I4(A) Pixel Module as Trigger Plane for Beam Test Telescope

Tobias Bisanz

Supervisor: Igor Rubinsky

Summer Student Presentation DESY Summer School 2013

HELMHOLTZ ASSOCIATION

GEORG-AUGUST-UNIVERSITÄT Göttingen

The Testbeam

- Electrons/Positrons shot onto carbon fibre
 - Bremsstrahlung
- > Hits converter (Al/Cu)
 - Pair production
- Magnet fans out energy
- Lead Collimator
 - Energy selection

More on the energy selection in Paul Schütze's talk!

The Telescope – The Realisation

- > Use Mimosa26 in the telescope planes
- They feature a very small pitch of only 18.4 µm in both directions
- Relative slow read-out of 115.2 µs (rolling shutter)
- > 576 x 1152 pixels featuring roughly 1 x 2 cm² active area

DAQ-Overview: Triggering

- Make snapshots only when particles cross
 - Only when particles from the beam cross – coincidence triggers!
- > Use scintillators for detection
 - Up- and down-stream of the telescope planes
- Hardware to read out: Trigger Logic Unit (TLU)
 - Triggers on falling slope due to photomultiplier (PM) signal

From PMTs to Trigger Plane

We want to replace the scintillators with ATLAS pixel detector:

- This allows to select a flexible triggering area
 - Useful if device under test (DUT) is small
- They can be used in a magnetic field
 - Until now this was only possible with (fragile) silicon PMs with scintillators
- > Additionally we have timing information

ATLAS Pixel Read-Out FE-I4(A)

- Frontend for readout of upcoming hybrid ATLAS pixel detectors
 - For dealing with higher luminosity (e.g. Instertable B-Layer)
 - Decrease in material and power consumption
- > Used with 50 x 250 μ m² pitched pixels (336 x 80 pixels)
- > Used hardware:

The Hitbus

- We get hit signals from the FE-I4
 - Actually we can select which pixels should contribute → region of interest selection
- > Unfortunately we get a positive pulse
 - But we need a falling slope
- Thus we have to invert the signal
- Problems: 50 Ω termination give clean but small signal while high impedance gives rise to deformation, reflections etc.

Putting it all together

Everything in Operation

> Hitmaps from the OnlineMonitor

Everything in Operation

Correlation from the OnlineMonitor

Y Correlation of USBPIXI4 0 and USBPIXI4 1

Region of Interest (ROI) Selection

Region of interest selection and Mimosa26 Hitmaps

🚟 Config Map				? X
Pixel value: Column: Row:				
Set selected pixel Set entire col Set lon Set all pixels	to value 0			
ROI ROI col low: ROI row low: ROI col high: ROI row high:	18 + 0 + 60 + 300 +			
Mask maker			Save	Cancel

- Showed very good performance in magnetic field
- Easily operated by non FE-I4 experts
- Inverters still need some improvement
 - 50 Ω termination is required for clean signal
- > FE-I4 timing information for track timestamping is in progress

THANKS FOR YOUR ATTENTION!

BACKUP

FE-I4 Analogue Readout

- Charge sensitive amplification in two stages
- Followed by a discriminator
- A lot of "control values" allow tuning of the amplifier
 - Important for us: threshold tuning via GDAC and TDAC
- Charge injection circuit FDAC local TDAC local 5 Bit 4 Bit feedback threshold tune tune Vth HitOR and HitOUT V_{fb} MonHi HitOr (bit 8) V_{fb2} \Box feedbox feedbox MonHit (bit 8) MonHit leakMon (bit 8) Cf2=8.7fF C_{f1}=17fF EN (bit0) Pad HitOut Preamp Amp2 QinD C_c=52fF C_{inj1} DigHit D Inj1 (bit 6) Dig En (SR bit) (bit 7) Inj0

HitOR Creation and Inverting

- We can enable different pixels and tell them to contribute to the HitOR bus
- They act pixelwise as the gate of a NMOS
 - Pull-down transistors
- > Two columns OR'ed together
- > And same schematic (pull-down transistors) for double column readout
- Selection via the ILEAK mask

The two Inverters

Inverter No. I

- > High speed differential driver, AD8131
- > Fixed gain of 2

>Inverter No. II

- > 1 GHz fast FET op amp, AD8131
- > Two stages, one unity gain and one inversion
- > Very high impedance

Thanks Mathias Reinecke & Torsten Külper

