# Light stops at the ILC in view of the latest Higgs results by LHC

Aleksandrina Nikolova, DESY Theory September 4, 2013

#### What this talk is about:

Investigating the possibility of having a  $\tilde{t}$  with a mass below 600 GeV consistent with latest Higgs mass measurements and direct  $\tilde{t}$  searches at the LHC (ATLAS).

#### What it is **not** about:

Considering constraints by cross sections, direct or indirect searches for other sparticles, cosmology, etc.

## Outline

#### Beyond the Standard Model

The picture not long ago Why go beyond? What is supersymmetry? What do we gain from it?

#### The 2012 discovery

What does it mean for SUSY?

#### Scanning the parameter space

Procedure 2D scans Range Results Multi-D scans Range

Large or small mixing?

#### Comparison with ATLAS data

Prospects for the Linear Collider

#### Beyond the Standard Model | The picture not long ago



Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 4/29

## Beyond the Standard Model $\mid$ Why go beyond?

## Why go beyond?

| <ul> <li>Electroweak</li> </ul>                    | $\checkmark$ |
|----------------------------------------------------|--------------|
| Strong                                             | $\checkmark$ |
| Gravity                                            | ×            |
| <ul> <li>Unification of gauge couplings</li> </ul> | ×            |
| <ul> <li>Hierarchy "problem"</li> </ul>            | ×            |
| <ul> <li>Fine tuning</li> </ul>                    | ×            |
| <ul> <li>Dark matter</li> </ul>                    | ×            |
| <ul> <li>Baryon asymmetry</li> </ul>               | ×            |
| • $(g-2)_{\mu}$                                    | ×            |

And more ...

#### What is supersymmetry?

Supersymmetry says:

boson  $\leftrightarrow$  fermion: same quantum numbers and mass, different spin imes

#### Broken symmetry?

Introduce mass-like terms for sparticles  $\Rightarrow$  softly break supersymmetry. Need different basis  $\Rightarrow$  mixing:  $\tilde{f}_{L,R} \rightarrow \tilde{f}_{1,2} \Rightarrow$  more parameters, e.g.:

$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + D_t^1 & m_t(A_t^* - \mu \cot \beta) \\ m_t(A_t - \mu^* \cot \beta) & M_{\tilde{t}_R}^2 + m_t^2 + D_t^2 \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$$

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 6/29

### What do we gain from it?

- Electroweak
- Strong
- Gravity
- Unification
- Hierarchy "problem"
- Fine tuning
- Dark matter
- Baryon asymmetry
- $(g-2)_{\mu}$



#### The 2012 discovery



Figure 1: ATLAS Higgs results with the full 2011 and 2012 data.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 8/29

#### What does it mean for SUSY?

In SUSY the Higgs mass is a prediction, rather than a parameter!

- Constrained models are under tension
- MSSM: If h is Standard Model-like, then  $M_h \lesssim 135 \text{ GeV } \checkmark$ BUT has 105 parameters!! What can we do?

Couplings of sparticles depend on Yukawa couplings of their particle partners  $\Rightarrow$  largest contribution from the  $\tilde{t}$  sector.

Few parameters matter in the Higgs sector of the MSSM  $\checkmark$ 

Seven parameters affect strongly  $M_h$ :

 $\mu$  ,  $\tan\beta$  ,  $A_t$  ,  $M_{\tilde{\tau}_L}(=M_{\tilde{\tau}_R})$  ,  $M_{\tilde{t}_L}(=M_{\tilde{t}_R})$  ,  $M_2$  and  $M_A$ 

#### Procedure (inspired by [arXiv:1211.1955])

- Use FeynHiggs [arXiv:hep-ph/9812320]
- Vary one at a time for several fixed values of the others
- Identify interesting range
- Loop over all of them simultaneously
- Compare predictions for light stops with LHC data

| Parameter            | Range* |   |      | Default value* |  |  |
|----------------------|--------|---|------|----------------|--|--|
| $\mu$                | -1500  | ; | 1500 | 200            |  |  |
| aneta                | 1      | ; | 100  | 5              |  |  |
| $A_t$                | -4500  | ; | 4500 | 2000           |  |  |
| $M_{\tilde{\tau}_L}$ | 0      | ; | 1500 | 300            |  |  |
| $M_{\tilde{t}_L}$    | 0      | ; | 1500 | 1000           |  |  |
| $M_2$                | 0      | ; | 500  | 500            |  |  |
| $M_A$                | 0      | ; | 500  | 250            |  |  |

 $^{*}\,\tan\beta$  is dimentionless, all other values are in GeV.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 11/29



Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 12/29



 $\Rightarrow$  either  $\mu = 0$  OR  $A_t \neq 0$  and  $\mu > 0$ .

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 13/29



Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 14/29



Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 15/29



 $A_t$  is decisive for a heavy Higgs and a light  $\tilde{t}_1$ ! Need a compromise between the two (must not go to too high  $|A_t|$ )



 $\Rightarrow$  either  $A_t$  is large and  $\mu \leq 0$  OR  $A_t = 0$  and  $|\mu|$  is large.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 17/29

For maximal  $M_h$  for minimal  $M_{\tilde{t}_1}$  we also need:

- $M_A$  and  $\tan \beta$  should be large, but there is no need to go above  $M_A = 250$  GeV and  $\tan \beta = 10$ .
- $M_A$  only affects  $M_h$  (for  $M_A < 100 \ M_h << M_Z$  and for  $M_A > 150 \ M_h \approx const$ )  $\Rightarrow$  Put  $M_A = 250$
- $M_2$  only affects  $M_{\chi^{0,\pm}}$  (for  $M_2 > 400~M_{\chi^{0,\pm}} \approx const$ )
- $M_{\tilde{\tau}_L}$  plays very little role  $\Rightarrow$  Put  $M_{\tilde{\tau}_L} = 300$

 $\Rightarrow$  Look at:

 $0 \leq |\mu| \leq 500, \ \tan\beta \approx 10, \ 0 < |A_t| \leq 500, \ 100 < M_{\tilde{t}_L} < 800, \ 0 \leq M_2 \leq 500$ 

\*  $\tan\beta$  is dimentionless, all other values are in GeV.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 18/29

| Parameter         | R      | ang | e*   | Number of points |
|-------------------|--------|-----|------|------------------|
| $\mu$             | -650   | ;   | 650  | 27               |
| aneta             | 5      | ;   | 35   | 4                |
| $A_t$             | -1200  | ;   | 1200 | 25               |
| $M_{\tilde{t}_L}$ | 100    | ;   | 1200 | 23               |
| $M_2$             | 0      | ;   | 500  | 3                |
| Total number o    | 186300 |     |      |                  |
| Number of poin    | 148585 |     |      |                  |

Number of points with  $M_h \in [123.5; 127.5]$  GeV: 6956

\*  $\tan\beta$  is dimentionless, all other values are in GeV.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 19/29



Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 20/29

#### Comparison with ATLAS data



Figure 2: ATLAS exclusion plots [ATLAS Public, Combined Summary Plots] + our selections.

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 21/29

At the  $e^+e^-$  linear collider:

- Leptonic interactions  $\Rightarrow$  clean environment, known  $E_{T,miss} \Rightarrow$  good particle identification
- Linear  $\Rightarrow$  polarized beams  $\Rightarrow$  asymmetric observables (e.g.  $\cos \theta_{\tilde{t}}$ )

 $\Rightarrow$  we can look at the asymmetry associated with different beam polarisations to determine the mixing angle between  $\tilde{t}_L$  and  $\tilde{t}_R!!$ 

#### For all selected points:

 $-350 \le \mu \le 200, \ 15 \le \tan \beta \le 35, \ 800 \le A_t \le 1200, \ 400 \le M_{\tilde{t}_L} \le 550, \ 135 < M_2 \le 500$ 

| $M_{\tilde{t}_1} \ / \ {\rm GeV}$ | $\sqrt{s} \ / \ { m GeV}$ | $\cos\theta_{\tilde{t}}$ | $\sigma_{+-}$ / fb | $\sigma_{-+}$ / fb | $A_{LR}$ |
|-----------------------------------|---------------------------|--------------------------|--------------------|--------------------|----------|
| 0.07                              |                           | 0 700                    | 0.00               | 0.00               | 0.467    |
| 237                               | 500                       | -0.766                   | 9.08               | 3.30               | -0.467   |
| 237                               | 600                       | -0.766                   | 44.9               | 16.5               | -0.463   |
| 240                               | 600                       | -0.772                   | 41.3               | 16.0               | -0.442   |
| 297                               | 1000                      | -0.767                   | 36.7               | 13.5               | -0.462   |
| 247                               | 600                       | -0.774                   | 36.6               | 13.4               | -0.464   |
| 354                               | 1000                      | -0.757                   | 24.3               | 9.39               | -0.443   |
| 401                               | 1000                      | -0.767                   | 15.0               | 5.48               | -0.465   |
| 220                               | 500                       | -0.781                   | 29.4               | 11.6               | -0.434   |
| 220                               | 600                       | -0.781                   | 59.7               | 23.7               | -0.432   |

Aleksandrina Nikolova | Light stops at the ILC (in view of the latest Higgs results by LHC) 23/29

Several regions with:

- $M_{\tilde{t}_1} < 300$  accessible energy scale!
- $\sigma \sim 40 \mbox{ to } 60 \mbox{ fb}$  good production cross sections!  $~~ \checkmark$

 $\Rightarrow$  produce stop pairs; with enough integrated luminosity get cross section measurement and error and then...

#### Prospects for the Linear Collider

get errors on the mass and mixing angle  $\rightarrow$  propagate to uncertainty in SUSY parameters.



Figure 3: Production cross section error bands in  $\cos \theta - A_{LR}$ plane [arXiv:hep-ph/0507011].

# **Questions?**

# **Backup slides**

Parameter values for each nine points are shown below:

|                               | $\mu$ | $\tan\beta$ | $A_t$ | $M_{\tilde{t}_L}$ | $M_2$ | $M_{\tilde{t}_1}$ | $M_{\chi^0}$ | $M_{\chi^{\pm}}$ | $M_h$ |
|-------------------------------|-------|-------------|-------|-------------------|-------|-------------------|--------------|------------------|-------|
| $\tilde{t} \to b\chi^{\pm}$ : |       |             |       |                   |       |                   |              |                  |       |
|                               | -200  | D 35        | 1000  | 450               | 500   | 237               | 178          | 195              | 124   |
|                               | 200   | ) 20        | 915   | 432               | 136   | 240               | 60.1         | 109              | 124   |
|                               | 200   | ) 20        | 915   | 432               | 227   | 240               | 99.4         | 159              | 124   |
|                               | -300  | 0 20        | 963   | 479               | 409   | 297               | 189          | 283              | 124   |
|                               | -350  | 0 20        | 868   | 432               | 136   | 247               | 64.7         | 131              | 124   |
| $\tilde{t} \to t \chi^0$ :    |       |             |       |                   |       |                   |              |                  |       |
|                               | 200   | 15          | 1200  | 550               | 500   | 353.7             | 174          | 192              | 125   |
|                               | 300   | 15          | 1000  | 550               | 500   | 401               | 224          | 287              | 124   |

| ŀ                       | ι tε                  | $\ln \beta$      | $A_t$ | $M_{\tilde{t}_L}$ | $M_2$ | $M_{\tilde{t}_1}$ | $M_{\chi^0}$ | $M_{\chi^{\pm}}$ | $M_h$ |
|-------------------------|-----------------------|------------------|-------|-------------------|-------|-------------------|--------------|------------------|-------|
| $\tilde{t} \rightarrow$ | → Wł                  | $\delta\chi^0$ : |       |                   |       |                   |              |                  |       |
| -                       | 200                   | 35               | 800   | 400               | 250   | 220               | 111          | 172              | 124   |
| $\tilde{t} \rightarrow$ | $\rightarrow c\chi^0$ | ):               |       |                   |       |                   |              |                  |       |
| -                       | 200                   | 35               | 1000  | 450               | 500   | 237               | 178          | 195              | 124   |

Note:

- For all points: decay to  $c\chi^0$  and  $b\chi^{\pm}$  channel is also open.
- For all but point 1 in the  $b\chi^{\pm}$  channel: decay to  $Wb\chi^0$  channel is open.