

Analysis of ttZ production in 4 lepton final states at CMS

Abigail O'Rourke

September 5, 2013

DESY Summer Student Program

Supervisors: Johannes Hauk & Andreas Meyer

Outline

- 1. Top pair dilepton measurements
- 2. ttZ process
- 3. Optimisation of event selection
- 4. Results

Top production & decay

<u>c</u> s	n+jets	I+jets	jets	all-ba	dronic
ūd	electro	muon	tau+	all-Ha	uronic
ч <mark>н</mark>	eτ	μτ	ξĩ	tau+jets	
, n	eμ	10°0	μτ	muon+jets	
θ	еÒ	eμ	eτ	electron+jets	
Necat	e^{+}	μ+	τ^{\star}	иd	cs

Direct dilepton (e, μ) decays 4.5% Dilepton final states (inc τ) 6.4%

- Tops mainly produced in pairs
- Top pair decays can be classified by decays of the two W bosons

Dilepton channel & backgrounds

- Branching ratio for dilepton final states low compared to others
- Lepton reconstruction much more precise than jets/hadrons
- Very clean signatures: small systematic effects and small backgrounds
 - Especially eµ final state quasi background free

Motivation of ttZ study

- Compare CMS 2012 data with MC predictions and theory calculations to test SM
- Public result available at 7 TeV in 3 lepton final state
- Relevant background in all rare multilepton processes and searches
- $ttZ(Z \rightarrow bb)$ is a relevant background for ttH searches

Process description

signal

background

- ▶ Signal: 4 leptons (at least 1 OSSF pair), 2 bjets and some missing E_T in final state.
- Main goal of this analysis: development & optimisation the event selection

- Signal events require 4 spatially isolated leptons (electrons & muons)
 - $p_T > 20$ GeV and $\eta < |2.4|$, passing trigger requirements
- Build Z from OSSF pair closest to the nominal Z mass (91 GeV)
- Dilepton top system chosen as OS pair from remaining leptons

Good data-to-MC agreement

- Jets are required to have $p_T > 30$ GeV and $\eta < |2.4|$
- bjets identification based on combined secondary vertex (CSV) algorithm

▶ Require jets and bjets → significant reduction in ZZ background

Event selection steps

Sample	4 leptons	1 jet	+ 1 btag	2 jets	+ 1 btag	+ 2 btags
$ZZ(4\ell)$	185 ± 0.4	48.9 ± 0.2	2.54 ± 0.05	11.98 ± 0.10	1.10 ± 0.03	0.10 ± 0.01
WZ($3\ell\nu$)	0.40 ± 0.07	0.18 ± 0.05	0.00	0.09 ± 0.03	0.00	0.00
WWZ	1.40 ± 0.10	0.72 ± 0.07	0.13 ± 0.03	0.32 ± 0.05	0.08 ± 0.02	0.01 ± 0.008
ZZZ	1.38 ± 0.05	0.98 ± 0.04	0.16 ± 0.02	0.50 ± 0.03	0.10 ± 0.01	0.02 ± 0.006
t t W ⁺ W ⁻	0.03 ± 0.002	0.03 ± 0.002	0.02 ± 0.002	0.02 ± 0.002	0.02 ± 0.002	0.01 ± 0.001
tītZ ⁰ signal	4.44 ± 0.30	4.35 ± 0.3	3.21 ± 0.26	3.28 ± 0.26	2.63 ± 0.24	1.19 ± 0.16
Sum MC	189.04	50.77	2.85	12.91	1.30	0.14
+ signal	193.48	55.12	6.06	16.19	3.92	1.33
Data	196 ± 14	42 ± 6.48	7 ± 2.65	13 ± 3.61	6 ± 2.45	2 ± 1.41
ttH	0.43 ± 0.03	0.41 ± 0.03	0.32 ± 0.03	0.34 ± 0.03	0.28 ± 0.03	0.10 ± 0.02

- Good data-to-MC agreement seen throughout
- 4 lepton: $ZZ \rightarrow 4\ell$ is most dominant contribution
- 1 jet + 1 btag: reduces ZZ background substantially, ttZ signal now dominant
- 2 jets + 2 btags: very little background, but small statistics
- ttH non-negligible background contribution, not counted in MC prediction

Selection optimisation

Efficiency against purity

• Optimal step 5; choose 3 to retain statistics but impose further requirements

Step 3 vs Step 5

- Step 5: 2 jets + 1 btag \rightarrow reduces ttZ signal to 2.63, background of 1.10
- Step 3: 1 jet + 1 btag \rightarrow ttZ signal of 3.21 but background of 2.85

Lepton combinations, 4 leptons + 1 jet + 1 btag

- But background is mostly ZZ and mainly same flavour leptons
 - Attempt to suppress this background

Further event selection cuts

- ▶ After 4 lepton + 1 jet + 1 btag Z window imposed to suppress ttH background ☺
 - Z window requires $76 < M_{\ell\ell} < 106$ GeV
- Veto on 2nd Z (if same flavour pair) introduced to suppress $ZZ \rightarrow 4\ell$ process

Calculating cross section

Cross section for ttZ calculated at optimal cut stage - final selection:

4 leptons + 1 jet + 1 btag + Z window + 2nd Z veto

$$\sigma = \frac{N_{\text{sig}}}{\epsilon_{\text{tot}} \cdot \int \mathcal{L} dt} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{\epsilon_{\text{tot}} \cdot \int \mathcal{L} dt}$$

- $N_{obs} = 3$, $N_{bkg} = 0.61$ $\epsilon_{tot} = 0.00063$
- $N_{sig} = N_{obs} N_{bkg} = 2.39$ Luminosity = 19.8 fb⁻¹
- ▶ N_{bkg} taken from MC, 50% uncertainty assigned
- ε_{tot} produced using the ttZ MC corrected for data efficiencies (stat. uncertainty 9%)

Systematic	Assigned uncertainty (%)
Pile up	1
Lepton efficiencies	9
Jet energy resolution	1
Jet energy scale	1
Btagging efficiencies	5
Mistagging efficiencies	1
All combined	11

- Using CMS 2012 data at 8 TeV
- Measured cross section:
 191 ± 138 (stat.) ± 37 (syst.) fb
- Theory calculation:
 206 + 19 24 fb
- Uncertainty of measurement is large - 72% stat error
- In agreement with SM predictions & MC simulations
- Injected ttH signal would change results minimally

Combined cross section

- Use lepton categories to calculate cross section
- Combine using maximum likelihood
- Cross section determined as:
 205 ± 136 (stat.) ± 23.5 (syst.) fb
- ▶ 66% statistical error
- Systematic error reduced

Lepton combinations, final selection

Event number: 123865322 Lumi block: 78 Run number: 191810

ttZ candidate event

Dilepton mass of Z system: 93.27 Lepton 1 - **p**_T: 120.2; **η**: -0.956 Lepton 2 - **p**_T: 23.28; **η**: -0.383

Dilepton mass of Top system: 30.94 Lepton 1 - **p**_T: 38.17; **η**: -1.384 Lepton 2 - **p**_T: 29.86; **η**: -0.903 2 b-tagged jets:

Jet 1 - p_T: 162.48; η: -1.249; btag: 0.884 Jet 2 - p_T: 124.14; η: -0.319; btag: 0.830 3rd non-b-tagged jet: Jet 3 - p_T: 59.00; η: 2.246

- Study of 4-lepton final states in ttZ production
- Optimised event selection requirements
- Cross section determined with very large statistical errors
 - Investigated combination method of calculation
- Found candidate ttZ event in very pure selection category

Back up

- Initially required $p_T > 20 \text{ GeV}$
- Statistics gained with $p_T > 10 \text{ GeV}$
 - Mostly from 4th lepton, some from 3rd
 - Some fakes introduces

- Further gained from $p_T > 5$ GeV
 - All from 4th lepton
 - Mostly fakes

