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Diffraction imaging

● The amplitude of the scattered wave can 
be calculated as: 

    where f is the atomic form factor defined as:

    

    where     is the atomic electron density

● We then have an access to the intensity through:
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Molecules at atomic resolution

Lysozyme

[R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu: Nature 406, 752 (2000) 
Radiation damage and Coulomb explosion]

Crystal

Structure determination through diffraction 
imaging?



 

Defects in crystals
● Crystal – a solid with a spatial periodicity

● Lattice – summarizes the geometry of the 
underlying periodic structure in crystal

      in 2D.

● Defect – any region in crystal, where the 
microscopic arrangement differs from that 
of a perfect crystal

● I
ideal

 - the intensity obtained from an 

undamaged crystal

● <I>
R
 – the average intensity obtained from 

a crystal with some random defects
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● Two types of 2D lattices were used

● The interatomic distance was chosen as unit
● Atomic form factor of neutral carbon was used
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●The crystal without defects

●The form factor is a random variable

●This will result in

Imaging of monoatomic crystals with vacancies
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Imaging of monoatomic crystals with 
displacements

● The atom position is a random variable 
(can be displaced by    )

● This will result in
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Monoatomic crystals with uncorrelated 
defects

If these conditions are satisfied:
● We deal with monoatomic crystals
● The defects are uncorrelated

then
● It can be proven that it always leads to

Scaling factor Background

where parameters X depend on the defect statistics
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Discussion

 

 

➢ If one knows the statistical distribution of defects, one can 
extract I

ideal
 from the average recorded intensity <I>

R
 for any 

kind of uncorrelated defects in monoatomic crystals.

➢ This becomes non-trivial, if crystal is not monoatomic. Even 
worse, if defects are correlated.

➢ Our numerical tool can perform analysis of defects for any 2D 
crystal geometry. Extension to 3D is straightforward.



 

Summary

➢ We have studied the influence of the lattice defects on the 
diffraction image

➢ Two types of uncorrelated defects were considered – vacancies 
and displacements

➢ The results obtained for both analytical and numerical approach 
were in agreement

➢ The scattering intensity from a damaged crystal allows us to 
recover the intensity from the undamaged crystal, if we know 
the underlying defect statistics



 

Thank you!
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