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 The amplitude of the scattered wave can
be calculated as:
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where fis the atomic form factor defined as:
f@) = p.F)e™d’F,

where p,,(7') is the atomic electron density

 We then have an access to the intensity through:
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Defects in crystals

e Crystal — a solid with a spatial periodicity

o Lattice — summarizes the geometry of the
underlying periodic structure in crystal
R =mn,a, +n,a, in 2D.

» Defect — any region in crystal, where the ’ ﬁzA) ’
microscopic arrangement differs from that =~ 4
of a perfect crystal

. | -the intensity obtained from an

idea

undamaged crystal

. </>_—the average intensity obtained from
a crystal with some random defects



» Two types of 2D lattices were used

Square lattice, 10 x 10 atoms
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Hexagonal lattice, 10 x 10 unit cells

-
.
unit cell ..
L - - =
}\“a
* » - =
®* » * » *

-10 -5 0 5 10

 The interatomic distance was chosen as unit

 Atomic form factor of neutral carbon was used
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Imaging of monoatomic crystals with vacancies

*The crystal without defects

*The form factor is a random variable

*This will result in
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Imaging of monoatomic crystals with

displacements
* The atom position is a random variable
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Monoatomic crystals with uncorrelated
defects

If these conditions are satisfied:
* We deal with monoatomic crystals
 The defects are uncorrelated

then
e It can be proven that it always leads to

(@), = 9(4,X) Ligeu (9) + B(g, X)

Scaling factor Background

where parameters X depend on the defect statistics



> If one knows the statistical distribution of defects, one can
extract /[ from the average recorded intensity <I>R for any

idea

kind of uncorrelated defects in monoatomic crystals.

> This becomes non-trivial, if crystal is not monoatomic. Even
worse, if defects are correlated.

» Our numerical tool can perform analysis of defects for any 2D
crystal geometry. Extension to 3D is straightforward.




We have studied the influence of the lattice defects on the
diffraction image

Two types of uncorrelated defects were considered — vacancies
and displacements

The results obtained for both analytical and numerical approach
were in agreement

The scattering intensity from a damaged crystal allows us to
recover the intensity from the undamaged crystal, if we know
the underlying defect statistics
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