Quantum Field Theory
without Lagrangians

Slava Rychkov

CERN &

Ecole Normale Supérieure (Paris) &
Université Pierre et Marie Curie (Paris)

DESY, Dec 3, 2013



Wh at iS d Q FT’ [everyone has a view]

Physically:
macroscopic structure emerging from microscopic dynamics

e local action

519
]

short distance d.o.f.

2 /24



Wh at iS d Q FT’ [everyone has a view]

Physically:
macroscopic structure emerging from microscopic dynamics

e local action

/qu e S[qu]

short distance d.o.f.

2 /24



Wh at iS d Q FT’ [everyone has a view]

Physically:
macroscopic structure emerging from microscopic dynamics

e local action

/qu e S[(?]

short distance d.o.f.

ceeneieeeceeeae. d  a=UV cutoff

2 /24



Wh at iS d Q FT’ [everyone has a view]

Physically:
macroscopic structure emerging from microscopic dynamics

e local action

/ng e S[?]

short distance d.o.f.
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e eeeecsssodes & a=UV cutoff
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eeseeeessssssoh Look at long distances: x >> a

O\0 ©0 0 0 0 0 0 0 0 0 0 ©0 o A

Main tool: Renormalization Group [Wilson [971] :
24



What is a QFT?

Mathematically: an associative algebra of local operators O; ()
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What is a QFT?

Mathematically: an associative algebra of local operators O; ()
Operator Product Expansion [Wilson’69]

Oi(z)0;i(y) = Y  Fiji(z — y)Ok(y)
k

Associativity:

(0i() x 0;(1)) x Ok(2) = Oulx) x (0;(y) x Ox(2))

Follows from demanding well-defined correlation functions:

(O:(21)0;(22) On(w3) Onar) )

no Lagrangian, no clear rel. between O’s and fund. fields... 3 /24



Plan of this talk

|.RG picture
2. Conformal fixed points
3. Bootstrap
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Renormalization Group

Experiment =

long-distance dynamics is universal (finite # of parameters)

[Cf. short-distance arbitrary, unknown,or grossly simpliﬁed]
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Renormalization Group

Experiment =

long-distance dynamics is universal (finite # of parameters)

[Cf. short-distance arbitrary, unknown,or grossly simpliﬁed]

RG “explains” this by the flow: S1ld1] = Sa|ps| — ...

UV: 00 many directions

\/

most are contracting

(‘purification’) finite-dim. IR structure
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RG view of theory space

AN

e = fixed point
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RG view of theory space

from a “lattice”

e = fixed point
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Lagrangian field theories

= flows starting from the Gaussian fixed points

(8¢)2 %-Gw (F;w)2

7 124



Possibilities for the IR dynamics

|. no massless modes (mass gap)
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Possibilities for the IR dynamics

|. no massless modes (mass gap)

2. massless particles (Goldstone bosons, photon)

[Effective Field Theory techniques]

3. (CFT) scale-invariant fixed point with a continuous spectrum

0< p* < o0

[no S-matrix, just correlation functions with “anomalous dimensions”]
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Example

L = (04)2 + m2¢p% + \p* in d=3

/

UV fixed point relevant perturbations
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Example

L = (0¢)* + m d? + A" in d=3
UV fixed point relevant perturbations
UV o

<-H{-> varying m?

2
mig < U e
@ <
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Example

L = (0¢)° + m?p? + \P* in d=3
UV fixed point relevant perturbations
UV o

<-H{-> varying m?

2
mig < U e
 /
@ < 9 —> @
cch2R - 077
a CFT

(same universality class as the critical point of the 3d Ising model)

9124



Main idea of conformal bootstrap

CFTs are universal,“rigid” structures.
Can we study them in isolation, without having to flow via RG!?

Using the “algebra of local operators™ definition...
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Main idea of conformal bootstrap

CFTs are universal,“rigid” structures.
Can we study them in isolation, without having to flow via RG!?

Using the “algebra of local operators™ definition...

Raoul Gatto Sergio Ferrara Aurelio Grillo

Proposed in 1970’s by:

Al

Alexander Polyakov 10/24




Why conformal?

In a scale=inv theory, correlators covariant under Poincarée+dilatations:

(01(\z1)O02(Az3) ...} = /\AﬁlAﬁ._. (01 (21)Os(x3) .. )

In a conformal theory, Poincare+dilatations+special conf.transformations:

=+f

r = )\(Q;)[g—f - &’xQ] Mz) = [1 -2a.%+a%z?]~?
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Why conformal?

In a scale=inv theory, correlators covariant under Poincarée+dilatations:

(01(\z1)O02(Az3) ...} = /\A1+1Az+.,, (01 (21)Os(x3) .. )

In a conformal theory, Poincare+dilatations+special conf.transformations:

T = \z)[Z — az’] Mz) = [1 —2a.% + a*z*]”
. Oz’ )
Jacobian: e Ax) X |z-dep. SO(d) matrix]
&

[def’ing property of conformal transformations]

1

(01(21)02(z3) - . ) = A(z1)A1 A (z2)A2 .. . (

01 (39'1)02(3)2) T >

[For non-derivative (aka primary) operators]
1'1/24



Scale inv + locality = conformal invariance

In a theory with a local stress tensor 1,

scale invariance & Tﬁ‘ = OpJ -

conformal invariance & e =
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Scale inv + locality = conformal invariance

In a theory with a local stress tensor 1,

scale invariance & Tﬁ = OpJ -

Generically

conformal invariance & =11
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. . [Technical part begins]
Conf. invariant correlators

Constraints on correlation functions [Polyakov 1971]:
8
(Oi(z)0;(y)) = IfErA
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. . [Technical part begins]
Conf. invariant correlators

Constraints on correlation functions [Polyakov 1971]:
S
(Oi(z)0;(y)) = |$?rA

fijk
(Oi(21)0;(x2)Or(3)) = [ T10| At —Ak| 5| At Bk =D |gyq|Bs+HAK—A
Starting from 4-point functions more difficult:
.
L1od
g(u,v) O
(O(IE1)O($2)O($3)O($4)> — :B%?;c%f :13%333%4
U= U264

[cross ratios]
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. . [Technical part begins]
Conf. invariant correlators

Constraints on correlation functions [Polyakov 1971]:
8
(Oi(z)0;(y)) = IfErA

fiin
(Oi(21)0;(x2)Or(3)) = [ T10| At —Ak| 5| At Bk =D |gyq|Bs+HAK—A

Starting from 4-point functions more difficult:

B sl

g(u, ) - L19L34
(O(21)0(z2)O0(3)0(z4)) = 228 528 T{3T5,
U= U264

BUT: g(u,v) not independent, can be computed in [cross ratios]

terms of A’s and fijs
13/24



Conf. invariant Operator Product Expansion

O1(z)0s(y) = Z fi12:P(z — y,0y)O0i(y)

/

structure constants
(OPE coeffs)
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Conf. invariant Operator Product Expansion

=Y fi2iP(z — y,0,)0s(y)

structure constants
(OPE coeffs)

infinite series in 0d,

o

e (14025, + @@ 0)+ )

\

coefficients fixed by conformal symmetry

P(z,0,) =

14/24



From OPE to 4-point functions

(01020304) = Z f12if34i P(x12,02) P(34,04)(0i(z2)0;(z4))

Pand

3
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From OPE to 4-point functions

(01020304) = Z f12if34i P(x12,02) P(34,04)(0i(z2)0;(z4))

— | )
=)<

3

= Representation for the function g(u,v):

g(u,v) = Z f12if34iG A, ¢, (u, V)
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From OPE to 4-point functions

(01020304) = Z f12if34i P(x12,02) P(34,04)(0i(z2)0;(z4))

—— - |\ )
2

>

= Representation for the function g(u,v):
g(u,v) = Z f12if34iG A, 0, (U, V)
| T

conformal blocks

[Complicated but known functions, depend on the dimension

and spin of Oi]

15/24



Conformal bootstrap

[Ferrara,Grillo,Gatto, 1973], [Polyakov, 1974]
For any four operators O;

ZI\ . 4 Z':\’j/4

T,

AN
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Conformal bootstrap

[Ferrara,Grillo,Gatto, 1973], [Polyakov, 1974]
For any four operators O;

ZI\ . 4 Z':\’j/4

T,

AN

o0 equations for 00 unknowns. Hopeless!?
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A history of bootstrap

- abandoned shortly after inception; attention moved to QCD and SUSY
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A history of bootstrap

- abandoned shortly after inception; attention moved to QCD and SUSY

- resurrected by [Belavin,Polyakov,Zamolodchikov‘1983] for CFT in d=2;
useful for solving the “minimal models” and the Liouville theory.

- resurrected in d23 in [Rattazzi, S.R.,Tonni,Vichi, 2008]

and many valuable subsequent works by various people

17/24



Example: critical 3d Ising model

From RG:

from [Pelissetto,Vicari, 2000]

(IR fixed point of * theory)

CFT with Z; global symmetry

Operator | Spin [ | Zo | A Exponent
o 0 — [ 0.5182(3) | A=1/2+n/2
O" 0 — z 4.5 A =3 + WA
€ 0 + | 1.413(1) A=3—-1/v
o 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =34+ wy
T 2 + 13 n/a
Cﬂy,i)\ 4 + 50208(12) A =3 + WNR

[infinitely many primaries per each spin]
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CFT with Z; global symmetry

From RG: Operator | Spinl | Zo | A Exponent
X 0 | — [05182(3) |A=1/2+7/2
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//y e 0 | +|14131) |A=3-1/v
¢ 0 | + |384(4) |A=3+uw
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Example: critical 3d Ising model (IR fixed point of ¢* theory)

CFT with Z; global symmetry

From RG: Operator | Spinl | Zo | A Exponent
X 0 | — [05182(3) |A=1/2+7/2
from [Pelissetto,Vicari, 2000] o’ 0 — | =245 A=3+wy
//y e 0 | +|14131) |A=3-1/v
¢ 0 | + |384(4) |A=3+uw
/ " 0 + | 4.67(11) | A=3+w,
lowest lying Z, odd/even Ty 2 |+ |3 n/a
scalars Cravr 4|+ ]5.0208(12) | A =3+ wnr

[infinitely many primaries per each spin]

ocxo=1+(e+¢€+...)

OPEs: +(Tp + ...
+—(|_Cp,vﬁ,)\ I G )

even spins only

axezo—l—a'—i—...
+ ...

all spins

18/24



Bootstrap analysis

focus on the 4-point function <OOO0>, O = lowest Z;-odd operator

;'> | 4 Z‘\’j/4

T
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Bootstrap analysis

focus on the 4-point function <OOO0>, O = lowest Z;-odd operator

;'> | 4 Z‘\’j/4

T

ute 11+ ZpiGAz-,E,,; (u,v)] =u <> v [crossing]

(/
contribution of unit \
operator in the OPE D = 20

o0r —

Limits possible cancellations

19/24



How to impose the equation?

w1+ 3 piGae (w0)] = u 0

- Work near the crossing-democratic configuration: | ;= 4
square u =1v = 1/4
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- Work near the crossing-democratic configuration: | ;= 4
square u =1v = 1/4 ' '

NI s

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)
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How to impose the equation?

ue [1+Zp,,,GA 0. (u,v)] =u o> v

- Work near the crossing- democratlc configuration: | i 4
square u =1v = 1/4 ' '

25 ............... 3

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)

- Allow the operator dimensions to take arbitrary values

(in practice may discretize with a minuscule step)
Squal’ed OPE CoeffS Pi — Unknowns (many more than equations)
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How to impose the equation?

ue [1+Zp,,,GA 0. (u,v)] =u o> v

- Work near the crossing- democratlc configuration: | i 4
square u =1v = 1/4 ' '

25 ............... 3

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)

- Allow the operator dimensions to take arbitrary values

(in practice may discretize with a minuscule step)
Squal’ed OPE CoeffS Pi — Unknowns (many more than equations)

- However only interested in solutions with all pi= 0

20/24



A sharp question

Lowest Z>-odd and even scalars 0 and € = most important operators

Can we use conformal bootstrap to relate their dimensions?
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A sharp question

Lowest Z>-odd and even scalars 0 and € = most important operators

Can we use conformal bootstrap to relate their dimensions?

May be possible since € appears in 0 x 0 OPE:

+(e+€+...)
(T +--+)

+(Cruver+-..)
1 s

ol s = |

21/24



Bootstrap = A: < f(Ao)

El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi 2012

Ac

1.8F  forbidden

1.6

1.4

allowed
1.2

S U T S
/0.50 055 060 065 070 0.75 0.80 Ag

free scalar

[A rigorous nonperturbative constraint on any Conformal QFT,

derived without any ref. to Lagrangians]
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Zoom on the kink
El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi 2012+ work in progress

Ac
1.44 ¢

143}

142}

RG error bars

141} el ,
| for critical 3d Ising

140}

139}

T 0516 0518 0520 0522 0524
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Zoom on the kink

El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi 2012+ work in progress

+1.411 ncomp=120 136 153 190 ; spin =0

1 44,
143}
142}
141}

140}

139}

D'OO(}.%OOO 0.0001 0.0002 0.0003 0.0004 0.0005
+5.179e—-1

0516 0518 0520 0522 improves going to higher order
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Zoom on the kink
El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi 2012+ work in progress

A
1.44_. _+1.411 ___ncomp=120 136 153 190 ; spin =0 _
143k T
S L 0.0025}
142 e
141} -RG error bars 0.0020(
; for critical 3d Ising
140t /Tl
L/ T 0.0015F
139 /T
) i ) ) ) . ) ) ) . ) ) ) . ) ) ) . ) A .~D:OO&.%OOO 0.0bOl 0.0602 0.0603 0.0bO4 O'Ob?l—SS 179e—1
0.516 0.518 0.520 0.522 0.524 o

improves going to higher order

Conjecture: critical 3d Ising lies at the limiting kink

23/24



Full spectrum determination

A El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi, work in progress

- no solutions
18[

1.6[
14}

o] many solutions
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L6} on the bdry: unique solution

O x O fixed (all operators and OPE coeffs)
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- no solutions
18[

L6} on the bdry: unique solution

O x O fixed (all operators and OPE coeffs)

14

o] many solutions

A A E = A A £ =2
¢ i
""" - € T
3d I.sing Ay 3d Ilsing A,
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Full spectrum determination

A El-Showk, Paulos, Poland, Simmons-Duffin, S.R.,Vichi, work in progress

- no solutions
18[

L6} on the bdry: unique solution

O x O fixed (all operators and OPE coeffs)

14

o] many solutions

A, = A, =2

extra op’s decouple at Ising point
(OPE coeffs — 0) 24124



