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What is a QFT?

Physically:
macroscopic structure emerging from microscopic dynamics

local action

short distance d.o.f.
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What is a QFT?

Physically:
macroscopic structure emerging from microscopic dynamics

local action

short distance d.o.f.

a = UV cutoff

Look at long distances: x >> a

Main tool: Renormalization Group [Wilson 1971]

[everyone has a view]
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What is a QFT?

Mathematically: an associative algebra of local operators
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What is a QFT?

Mathematically: an associative algebra of local operators

Operator Product Expansion [Wilson’69]

Associativity:

Follows from demanding well-defined correlation functions:

no Lagrangian, no clear rel. between O’s and fund. fields...
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Plan of this talk

1. RG picture
2. Conformal fixed points
3. Bootstrap
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Renormalization Group
Experiment ⇒ 

long-distance dynamics is universal (finite # of parameters)

[Cf. short-distance arbitrary, unknown,or grossly simplified]
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Renormalization Group
Experiment ⇒ 

long-distance dynamics is universal (finite # of parameters)

[Cf. short-distance arbitrary, unknown,or grossly simplified]

RG “explains” this by the flow:

UV: ∞ many directions

most are contracting
(‘purification’) finite-dim. IR structure
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RG view of theory space

= fixed point
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RG view of theory space

= fixed point

from a “lattice”
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Lagrangian field theories

= flows starting from the Gaussian fixed points
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Possibilities for the IR dynamics 

1. no massless modes (mass gap)
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Possibilities for the IR dynamics 

1. no massless modes (mass gap)

2. massless particles (Goldstone bosons, photon)
[Effective Field Theory techniques] 

3. (CFT) scale-invariant fixed point with a continuous spectrum

[no S-matrix, just correlation functions with “anomalous dimensions”]
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Example

in d=3

UV fixed point relevant perturbations
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UV
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Example

in d=3

UV fixed point relevant perturbations

a CFT
(same universality class as the critical point of the 3d Ising model)

UV

varying m2



/24

   

10

Main idea of conformal bootstrap
CFTs are universal, “rigid” structures.

Can we study them in isolation, without having to flow via RG?

Using the “algebra of local operators” definition... 
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Main idea of conformal bootstrap
CFTs are universal, “rigid” structures.

Can we study them in isolation, without having to flow via RG?

Using the “algebra of local operators” definition... 

Raoul Gatto Sergio Ferrara Aurelio Grillo

Alexander Polyakov 

Proposed in 1970’s by:
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Why conformal?

In a scale-inv theory, correlators covariant under Poincaré+dilatations:

In a conformal theory, Poincaré+dilatations+special conf.transformations:
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Why conformal?

In a scale-inv theory, correlators covariant under Poincaré+dilatations:

In a conformal theory, Poincaré+dilatations+special conf.transformations:

[def’ing property of conformal transformations]

Jacobian:

[For non-derivative (aka primary) operators]
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Scale inv + locality ⇒ conformal invariance

In a theory with a local stress tensor

scale invariance ⇔ 

conformal invariance ⇔ 
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Scale inv + locality ⇒ conformal invariance

In a theory with a local stress tensor

scale invariance ⇔ 

conformal invariance ⇔ 

Generically 
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Conf. invariant correlators

Constraints on correlation functions [Polyakov 1971]:

[Technical part begins]
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Conf. invariant correlators

Constraints on correlation functions [Polyakov 1971]:

Starting from 4-point functions more difficult:

[cross ratios]BUT:  g(u,v) not independent, can be computed in
terms of Δ’s and fijk’s 

[Technical part begins]
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Conf. invariant Operator Product Expansion

structure constants
(OPE coeffs)
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Conf. invariant Operator Product Expansion

structure constants
(OPE coeffs)

infinite series in ∂y

coefficients fixed by conformal symmetry
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From OPE to 4-point functions
{ { 1

2 3

4
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From OPE to 4-point functions
{ { 1

2 3

4

⇒ Representation for the function g(u,v): 

conformal blocks
[Complicated but known functions, depend on the dimension 

and spin of Oi]



/24

   

16

Conformal bootstrap
[Ferrara,Grillo,Gatto, 1973], [Polyakov, 1974]

1

2 3

4 1

2 3

4

=

For any four operators Oi
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Conformal bootstrap
[Ferrara,Grillo,Gatto, 1973], [Polyakov, 1974]

1

2 3

4 1

2 3

4

=

For any four operators Oi

∞ equations for ∞ unknowns. Hopeless?

Schematically:

[i.e. 2↔ 4, u↔ v]
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A history of bootstrap

- abandoned shortly after inception; attention moved to QCD and SUSY
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useful for solving the “minimal models” and the Liouville theory.



/24

   

17

A history of bootstrap

- abandoned shortly after inception; attention moved to QCD and SUSY

- resurrected by [Belavin,Polyakov,Zamolodchikov‘1983] for CFT in d=2; 
useful for solving the “minimal models” and the Liouville theory.

- resurrected in d≥3 in [Rattazzi, S.R.,Tonni, Vichi, 2008]
and many valuable subsequent works by various people
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puting the conformal partial waves appearing in four-point functions of scalars for CFTs in
any dimension (including D = 3). In Section 5 we present bounds on 3D CFTs that follow
from crossing symmetry and compare them to what is known about the 3D Ising model.
Finally, we discuss our results and future directions for this program in Section 6.

2 Operator Content of the 3D Ising Model

We assume that the reader is familiar with the basic facts about the Ising model and the
critical phenomena in general, see [24–27, 1].

In this paper, we will be aiming for a solution of the 3D Ising model in the continuum
limit and at the critical temperature T = Tc. While the 2D Ising model was solved exactly
on the lattice and for any temperature by Onsager and Kaufman in the 1940’s, the 3D lattice
case has resisted all attempts for an exact solution. Istrail [28] proved in 2000 that solving
the 3D Ising model on the lattice is an NP-complete problem. However, this theorem does
not exclude the possibility of finding a solution in the continuum limit.

The standard way to think about the continuum theory is in terms of local operators (or
fields). At T = Tc, the theory has scale (and, as we discuss below, conformal) invariance,
and each operator is characterized by its scaling dimension ∆ and O(3) spin. The operators
of spin higher than 1 are traceless symmetric tensors.

In Table 1 we list a few notable local operators, which split into odd and even sectors
under the global Z2 symmetry (the Ising spin flip). The operators σ and ε are the lowest
dimension Z2-odd and even scalars respectively—these are the continuum space versions of
the Ising spin and of the product of two neighboring spins on the lattice. The two next-
to-lowest scalars in each Z2-sector are called σ� and ε�. Their dimensions are related to
the irrelevant critical exponents ωA and ω measuring corrections to scaling. The operator
ε�� is analogously related to the next-to-leading Z2-even irrelevant exponent ω2. The stress
tensor Tµν has spin 2 and, as a consequence of being conserved, canonical dimension ∆T = 3.
The lowest-dimension spin 4 operator Cµνκλ has a small anomalous dimension, related to
the critical exponent ωNR measuring effects of rotational symmetry breaking on the cubic
lattice.

Operator Spin l Z2 ∆ Exponent

σ 0 − 0.5182(3) ∆ = 1/2 + η/2
σ� 0 − � 4.5 ∆ = 3 + ωA

ε 0 + 1.413(1) ∆ = 3− 1/ν
ε� 0 + 3.84(4) ∆ = 3 + ω
ε�� 0 + 4.67(11) ∆ = 3 + ω2

Tµν 2 + 3 n/a
Cµνκλ 4 + 5.0208(12) ∆ = 3 + ωNR

Table 1: Notable low-lying operators of the 3D Ising model at criticality.

3

[infinitely many primaries per each spin]

from [Pelissetto, Vicari, 2000]

Example: critical 3d Ising model (IR fixed point of φ4 theory) 

CFT with Z2 global symmetry

From RG:
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Example: critical 3d Ising model (IR fixed point of φ4 theory) 

CFT with Z2 global symmetry

From RG:

lowest lying Z2 odd/even 
scalars
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3

[infinitely many primaries per each spin]

from [Pelissetto, Vicari, 2000]

Example: critical 3d Ising model (IR fixed point of φ4 theory) 

CFT with Z2 global symmetry

From RG:

lowest lying Z2 odd/even 
scalars

even spins only

all spins

OPEs:



/24

   

19

Bootstrap analysis

focus on the 4-point function <σσσσ>,  σ = lowest Z2-odd operator 

1

2 3

4 1

2 3

4

=
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Bootstrap analysis

focus on the 4-point function <σσσσ>,  σ = lowest Z2-odd operator 

1

2 3

4 1

2 3

4

=

contribution of unit 
operator in the OPE

[crossing]

Limits possible cancellations
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How to impose the equation?

-  Work near the crossing-democratic configuration:  
square

1

2 3

4



/24

   

20

How to impose the equation?

-  Work near the crossing-democratic configuration:  
square

1

2 3

4

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)



/24

   

20

How to impose the equation?

-  Work near the crossing-democratic configuration:  
square

1

2 3

4

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)

- Allow the operator dimensions to take arbitrary values 
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How to impose the equation?

-  Work near the crossing-democratic configuration:  
square

1

2 3

4

- Taylor-expand around the square up to order N=O(100)
(large but finite number of equations)

- Allow the operator dimensions to take arbitrary values 
(in practice may discretize with a minuscule step) 
Squared OPE coeffs pi = unknowns (many more than equations)

- However only interested in solutions with all pi≥ 0
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A sharp question

Lowest Z2-odd and even scalars σ and ε = most important operators 

Can we use conformal bootstrap to relate their dimensions?
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A sharp question

Lowest Z2-odd and even scalars σ and ε = most important operators 

Can we use conformal bootstrap to relate their dimensions?

May be possible since ε appears in σ x σ OPE:
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Bootstrap ⇒  Δε ≤ f(Δσ) 
El-Showk, Paulos, Poland, Simmons-Duffin, S.R., Vichi 2012

0.50 0.55 0.60 0.65 0.70 0.75 0.80 �Σ1.0

1.2

1.4

1.6

1.8

�Ε

allowed

forbidden

free scalar

[A rigorous nonperturbative constraint on any Conformal QFT,

derived without any ref. to Lagrangians]
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RG error bars
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for critical 3d Ising

El-Showk, Paulos, Poland, Simmons-Duffin, S.R., Vichi 2012+ work in progress
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Zoom on the kink

RG error bars

0.516 0.518 0.520 0.522 0.524 �Σ

1.39

1.40

1.41

1.42

1.43

1.44
�Ε

for critical 3d Ising

El-Showk, Paulos, Poland, Simmons-Duffin, S.R., Vichi 2012+ work in progress

improves going to higher order

Conjecture: critical 3d Ising lies at the limiting kink
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Full spectrum determination
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no solutions
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Full spectrum determination

0.50 0.55 0.60 0.65 0.70 0.75 0.80 �Σ1.0

1.2

1.4

1.6

1.8

�Ε
no solutions

many solutions

on the bdry: unique solution
σ x σ fixed (all operators and OPE coeffs)

Instructive to compute and plot spectrum as f(Δσ):

3d Ising 3d Ising

El-Showk, Paulos, Poland, Simmons-Duffin, S.R., Vichi,  work in progress

extra op’s decouple at Ising point
(OPE coeffs → 0)


