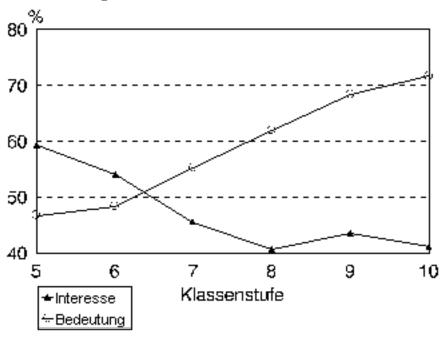
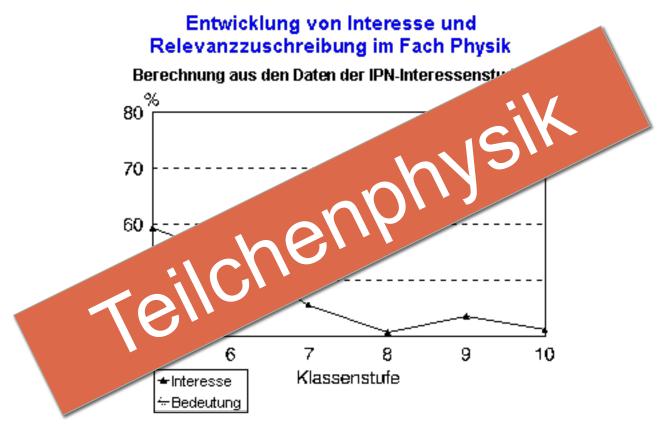
TEILCHENPHYSIK IM UNTERRICHT

Geht das?





Entwicklung von Interesse und Relevanzzuschreibung im Fach Physik

Berechnung aus den Daten der IPN-Interessenstudie

N = 4034; Datenbasis Hoffmann/Lehrke 1985, S. 34/38 (eigene Berechnung)

N = 4034; Datenbasis Hoffmann/Lehrke 1985, S. 34/38 (eigene Berechnung)

Warum kommt Teilchenphysik in der Schule kaum vor?

- 1. Teilchenphysik als relativ junger Teilbereich der Physik.
- 2. Es gibt relativ wenige Experimente, die in der Schule durchgeführt werden können.
- Teilchenphysik gilt als "sehr schwer", weil umfangreiche Kenntnisse aus der Physik und Mathematik vorhanden sein müssen.

Warum kommt Teilchenphysik in der Schule kaum vor?

- 1. Teilchenphysik als relativ junger Teilbereich der Physik.
- 2. Es gibt relativ wenige Experimente, die in der Schule durchgeführt werden können.
- 3. Teilchenphysik gilt als "sehr schwer", weil umfangreiche Kenntnisse aus der Physik und Mathematik vorhanden sein müssen.
 - Es wird bei Kicher et. al. (2009) allerdings auch direkt bemerkt: Es gibt "Möglichkeiten Inhalte schülergemäß zu elementarisieren."

Teilchenphysik als "junger Teilbereich" der Physik?

- Geschichte der Untersuchung der Struktur der Materie ist fast 2500 Jahre alt: Demokrit.
- Entwicklung von Detektoren und Beschleunigern trieb experimentelle Untersuchung erst Mitte des letzten Jahrhunderts richtig voran.
- Teilchenphysik wurde erst in den letzten Jahren zunehmend von der breiten Öffentlichkeit wahrgenommen.

Auszug aus Liste der Nobelpreise in Physik

1927 Wilson (Nebelkammer) 1936 Hess/Anderson (kosmische Strahlung/Positron) 1939 Lawrence (Zyklotron) 1948 Blacket (Nebelkammer) 1949 Yukawa (Mesonen) 1950 Powell (Kernemulsion) 1954 Bothe (Koinzidenzmethode) 1955 Kusch (magn. Moment d. Elektrons) 1957 Yang/Lee (Parität) 1958 Tscherenkow/Frank/Tamm (Tscherenkow-Effekt) 1959 Segè/Chamberlain (Antiproton) 1960 Glaser (Blasenkammer) 1961 Hofstadter (Struktur Nukleonen) 1963 Wigner (Elementarteilchen/Symmetrie) 1965 Feynman (Quantenelektrodynamik) 1968 Alvarez (Resonanzzustände) 1969 Gell-Mann (Quarks) (1972 Bardeen/Cooper/Schrieffer (Supraleitung)) 1976 Richter/Ting (J/ψ) 1979 Glashow/Salam/Weinberg (Elektroschwache Wechselwirkung) 1980 Cronin/Fitch (Symmetriebrechung bei K-Mesonen) 1984 Rubbia/van der Meer (W-/Z-Bosonen) 1988 Ledermann/Schwartz/Steinberger (Dublettstruktur, Myonneutrino) 1990 Friedmann/Kendall/Taylor (Beitrag zum Quarkmodell) 1992 Charpak (Vieldraht-Proportionalkammer) 1995 Perl/Reines (T-Lepton/Nachweis Neutrinos) (1996 Lee/Osheroff/Richardson (Suprafluidität Helium-3)) 1999 't Hooft/Veltman (elektroschwache Wechselwirkung) 2002 Davis junior/Koshiba (Nachweis Neutrinos) (2003 Abrikossow/Ginsburg/Leggett (Supraleiter)) 2004 Gross/Politzer/Wilczek (Starke Wechselwirkung) 2008 Nambu/Kobayashi/Masukawa (spontane Symmetriebrechung) 2013 Englert/Higgs (Higgs-Teilchen)

Auszug aus Liste der Nobelpreise in Physik

1927 Wilson (Nebelkammer)

1936 Hess/Anderson (kosmische Strahlung/Positron) 1939 Lawrence (Zyklotron) 1948 Blacket (Nebelkammer) 1949 Yukawa (Mesonen) 1950 Powell (Kernemulsion) 1954 Bothe (Koinzidenzmethode) 1955 Kusch (magn. Moment d. Elektrons) 1957 Yang/Lee (Parität) 1958 Tscherenkow/Frank/Tamm (Tscherenkow-Effekt) 1959 Segè/Chamberlain (Antiproton) 1960 Glaser (Blasenkammer) 1961 Hofstadter (Struktur Nukleonen) 1963 Wigner (Elementarteilchen/Symmetrie) 1965 Feynman (Quantenelektrodynamik) 1968 Alvarez (Resonanzzustände) 1969 Gell-Mann (Quarks) (1972 Bardeen/Cooper/Schrieffer (Supraleitung)) 1976 Richter/Ting (J/ψ) 1979 Glashow/Salam/Weinberg (Elektroschwache Wechselwirkung) 1980 Cronin/Fitch (Symmetriebrechung bei K-Mesonen) 1984 Rubbia/van der Meer (W-/Z-Bosonen) 1988 Ledermann/Schwartz/Steinberger (Dublettstruktur, Myonneutrino) 1990 Friedmann/Kendall/Taylor (Beitrag zum Quarkmodell) 1992 Charpak (Vieldraht-Proportionalkammer) 1995 Perl/Reines (T-Lepton/Nachweis Neutrinos)

(1996 Lee/Osheroff/Richardson (Suprafluidität Helium-3))
1999 `t Hooft/Veltman (elektroschwache Wechselwirkung)
2002 Davis junior/Koshiba (Nachweis Neutrinos)
(2003 Abrikossow/Ginsburg/Leggett (Supraleiter))
2004 Gross/Politzer/Wilczek (Starke Wechselwirkung)
2008 Nambu/Kobayashi/Masukawa (spontane Symmetriebrechung)
2013 Englert/Higgs (Higgs-Teilchen)

Auszug aus Liste der Nobelpreise in Physik

1927	Wilson: Nebelkammer
1936	Hess/Anderson: kosm. Str. / Positron
1939	Lawrence: Zyklotron
1948	Blacket: Nebelkammer
1949	Yukawa: Mesonen
1950	Powell: Kernemulsion
1954	Bothe: Koinzidenzmethode
1955	Kusch: magn. Moment d. Elektrons
1957	Yang/Lee: Parität
1958	Tscherenkow/Frank/Tamm:
,	Tscherenkow-Effekt
1959	Segè/Chamberlain: Antiproton
1960	Glaser: Blasenkammer
1961	Hofstadter: Struktur Nukleonen
1963	Wigner: Elementarteil./Symmetrie
1965	Feynman: Quantenelektrodynamik
1968	Alvarez: Resonanzzustände
1969	Gell-Mann: Quarks
1972	Bardeen/Cooper/Schrieffer: Supral.
1976	Richter/Ting: J/ψ

```
1979 Glashow/Salam/Weinberg:
     Elektroschwache WW.
1980 Cronin/Fitch: Symmetriebrechung bei
     K-Mesonen
1984 Rubbia/van der Meer: W-/Z-Bosonen
1988 Ledermann/Schwartz/Steinberger:
     Dublettstruktur, Myonneutrino
1990 Friedmann/Kendall/Taylor: Quarks
1992 Charpak: Vieldraht-Proportionalk.
1995 Perl/Reines: T / Nachweis Neutrinos
1996 Lee/Osheroff/Richardson:
     Suprafluidität Helium-3
1999 't Hooft/Veltman: elektroschw. WW.
2002 Davis junior/Koshiba:
     Nachweis Neutrinos
2003 Abrikossow/Ginsburg/Leggett:
     Supraleiter
2004 Gross/Politzer/Wilczek: Starke WW.
2008 Nambu/Kobayashi/Masukawa:
```

spontane Symmetriebrechung

2013 Englert/Higgs: Higgs-Teilchen

Auszug aus Liste der Nobelpreise in Physik

1927	Wilson: Nebelkammer
1936	Hess/Anderson: kosm. Str. / Positron
1939	Lawrence: Zyklotron
1948	Blacket: Nebelkammer
1949	Yukawa: Mesonen
1950	Powell: Kernemulsion
1954	Bothe: Koinzidenzmethode
1955	Kusch: magn. Moment d. Elektrons
1957	Yang/Lee: Parität
1958	Tscherenkow/Frank/Tamm:
	Tscherenkow-Effekt
1959	Segè/Chamberlain: Antiproton
1960	Glaser: Blasenkammer
1961	Hofstadter: Struktur Nukleonen
1963	Wigner: Elementarteil./Symmetrie
1965	Feynman: Quantenelektrodynamik
1968	Alvarez: Resonanzzustände
1969	Gell-Mann: Quarks
1972	Bardeen/Cooper/Schrieffer: Supral.
1976	Richter/Ting: J/ψ

```
1979 Glashow/Salam/Weinberg:
     Elektroschwache WW.
1980 Cronin/Fitch: Symmetriebrechung bei
     K-Mesonen
1984 Rubbia/van der Meer: W-/Z-Bosonen
1988 Ledermann/Schwartz/Steinberger:
     Dublettstruktur, Myonneutrino
1990 Friedmann/Kendall/Taylor: Quarks
1992 Charpak: Vieldraht-Proportionalk.
1995 Perl/Reines: T / Nachweis Neutrinos
1996 Lee/Osheroff/Richardson:
     Suprafluidität Helium-3
1999 't Hooft/Veltman: elektroschw. WW.
2002 Davis junior/Koshiba:
     Nachweis Neutrinos
2003 Abrikossow/Ginsburg/Leggett:
     Supraleiter
2004 Gross/Politzer/Wilczek: Starke WW.
2008 Nambu/Kobayashi/Masukawa:
```

spontane Symmetriebrechung

2013 Englert/Higgs: Higgs-Teilchen

- Ist Teilchenphysik in den Lehrplänen der Sek II vorhanden?
- Gibt es eine Struktur?
- Was muss man laut Lehrplan zur Teilchenphysik wissen?
- Wie viel Zeit wird für die Teilchenphysik eingeräumt?
- Vorarbeit von Konrad Jende und Thomas Unkelbach
- Lehrpläne im Internet: <u>http://www.kmk.org/dokumentation/lehrplaene/uebersicht-lehrplaene.html</u>

TP im Pflichtbereich	TP im Wahlbereich	Keine TP
Baden-Württemberg	Berlin	Niedersachsen
Bayern	Brandenburg	Sachsen
Bremen	Hessen	Thüringen
Hamburg	Rheinland-Pfalz	
MV	Saarland	
NRW	Sachsen-Anhalt	
	Schleswig-Holstein	

- Unterschiedliche Formulierungen
- Teilweise unterschiedliche Themen/Schwerpunkte
- Stark unterschiedliche Stundenzahl von keiner Angabe über 2 Stunden bis 43 Stunden.

- Unterschiedliche Formulierungen
- Teilweise unterschiedliche Themen/Schwerpunkte
- Stark unterschiedliche Stundenzahl von keiner Angabe über 2 Stunden bis 43 Stunden.

Länder	Schwerpunkte	Zeitskala
Baden-Württemberg	1, 2, 3	2 – 4 Std.
Bayern	1, 2, 3, 4, 5, 9	6 Std.
Hessen	Anknüpfen an vorherige Themen	(24 – 43 Std.)
Rheinland-Pfalz	1, 3, 4, 6, 8	10 Std.
Sachsen-Anhalt	1, 4, 7, 8, 9, 10	4 Std.
Schleswig-Holstein	1, 3, 4, 10	8 Std.

- 1: Überblick Elementarteilchen
- 2: Untersuchungsmethoden
- 3: Struktur der Materie
- 4: Wechselwirkungen
- 5: Dunkle Materie/Energie

- 6: Feynman Diagramme
- 7: Grundlegende Fragestellungen
- 8: Aktuelle Entwicklungen
- 9: Teilchen und Antiteilchen
- 10: Beschleuniger

Länder	Schwerpunkte	Zeitskala
Baden-Württemberg	1, 2, 3	2 – 4 Std.
Bayern	1, 2, 3, 4, 5, 9	6 Std.
Hessen	Anknüpfen an vorherige Themen	(24 – 43 Std.)
Rheinland-Pfalz	1, 3, 4, 6, 8	10 Std.
Sachsen-Anhalt	1, 4, 7, 8, 9, 10	4 Std.
Schleswig-Holstein	1, 3, 4, 10	8 Std.

- 1: Überblick Elementarteilchen
- 2: Untersuchungsmethoden
- 3: Struktur der Materie
- 4: Wechselwirkungen
- 5: Dunkle Materie/Energie

- 6: Feynman Diagramme
- 7: Grundlegende Fragestellungen
- 8: Aktuelle Entwicklungen
- 9: Teilchen und Antiteilchen
- 10: Beschleuniger

Länder	Schwerpunkte	Zeitskala
Baden-Württemberg	1, 2, 3	2 – 4 Std.
Bayern	1, 2, 3, 4, 5, 9	6 Std.
Hessen	Anknüpfen an vorherige Themen	(24 – 43 Std.)
Rheinland-Pfalz	1, 3, 4, 6, 8	10 Std.
Sachsen-Anhalt	1, 4, 7, 8, 9, 10	4 Std.
Schleswig-Holstein	1, 3, 4, 10	8 Std.

- 1: Überblick Elementarteilchen
- 2: Untersuchungsmethoden
- 3: Struktur der Materie
- 4: Wechselwirkungen
- 5: Dunkle Materie/Energie

- 6: Feynman Diagramme
- 7: Grundlegende Fragestellungen
- 8: Aktuelle Entwicklungen
- 9: Teilchen und Antiteilchen
- 10: Beschleuniger

Probleme:

- Solange Teilchenphysik ein Wahlthema bleibt, wird es kaum unterrichtet.
- Fehlende Relevanz f
 ür das Abitur.

Probleme:

- Solange Teilchenphysik ein Wahlthema bleibt, wird es kaum unterrichtet.
- Fehlende Relevanz f
 ür das Abitur.

Lösung:

 Ministerien dazu bewegen, großzügigen Platz für Teilchenphysik im Lehrplan zu schaffen.

Probleme:

- Solange Teilchenphysik ein Wahlthema bleibt, wird es kaum unterrichtet.
- Fehlende Relevanz f
 ür das Abitur.

Lösung:

- Ministerien dazu bewegen, großzügigen Platz für Teilchenphysik im Lehrplan zu schaffen.
- Anknüpfungspunkte im Lehrplan identifizieren!

Warum die "Lehrplan"-Physik mit Beispielen aus der modernen Forschung (Teilchenphysik) bereichern?

- Größe und Einzigartigkeit der Teilchenphysik-Projekte als Beispiel, was Menschen erreichen können, wenn sie ihre Köpfe über Ländergrenzen hinweg zusammenstecken!
- Am CERN werden ständig Rekorde gebrochen.
- Der LHC mit seinen Experimenten ist das teuerste Experiment, das jemals gebaut wurde. Deshalb sollte jeder darüber Bescheid wissen.
- Anhand von "CERN Physik" kann man Konzepte gut vermitteln und mit "einfachen" Rechnungen auch die Schulphysik gut einüben. Man verliert nichts und erzeugt gleichzeitig Neugier für aktuelle Forschung.

Mögliche Anknüpfungspunkte

Sek I	Sek II
Erhaltungssätze	Mechanik
Lorentz-Kraft	ElektromagnetismusTeilchen in Feldern
Radioaktiver Zerfall	Quantenmechanik
Atomaufbau	Spez. Relativitätstheorie
÷:	:

Beispiel Gase/Druck1

- Vorkenntnisse:
 - Druck
 - Gasgleichung
- Lernmöglichkeiten
 - Funktionsprinzipien Beschleuniger (z. B. Vakuumsystem, Protonenquelle, Strahlrohr)
 - Wichtige Spezialbegriffe (z. B. Luminosität)
 - Vertiefung der Vorkenntnisse
- Rechnungen:
 - Frage I: Wie hoch ist der Protonenverschleiß am LHC?
 - Frage II: Wie viele Gasmoleküle befinden sich im Kollisionspunkt?

¹Siehe auch: Cid-Vidal und Cid (2011a).

Beispiel Gase/Druck1

Frage I.1: Wie viele Protonen sind im LHC?

Anzahl der Teilchenpakete: 2808

Anzahl der Teilchen pro Paket: $1.15 \cdot 10^{11}$

Anzahl der Protonen pro Strahl: $N = 2808 \cdot 1.15 \cdot 10^{11} = 3 \cdot 10^{14}$

Anzahl der Protonen insgesamt: $N_{qes} = 2 \cdot N = 6 \cdot 10^{14}$

Beispiel Gase/Druck1

Frage I.2: Wie viele Protonen (Wasserstoffatome) befinden sich in 1 Kubikzentimeter Wasserstoffgas?

$$P = 10^5 \text{ Pa}, V = 10^{-6} \text{ m}^3, T = 293 \text{ K}$$

Rechnung:
$$P \cdot V = n \cdot R \cdot T \Leftrightarrow$$

$$n = \frac{P \cdot V}{R \cdot T}$$

$$n = 4 \cdot 10^{-5} \text{mol}$$

$$N_{\text{Moleküle}} = n \cdot N_A = 2.4 \cdot 10^{19}$$

$$N_{\text{Protonen}} = 2 \cdot N_{\text{Moleküle}} = 5 \cdot 10^{19}$$

Füllungen für den LHC:

$$\frac{5 \cdot 10^{19}}{6 \cdot 10^{14}} \approx 100000$$

¹Siehe auch: Cid-Vidal und Cid (2011a).

Beispiel Gase/Druck1

Frage I.3: Wie viele Wasserstoffatome befinden sich in einer Wasserstoffgasflasche, welche 5kg fasst?

Stoffmenge n:
$$n = \frac{\text{Masse Gas}}{\text{Molare Masse}} \approx \frac{5000g}{2} = 2500 \text{ mol}$$

$$\Rightarrow N_{\text{Moleküle}} = n \cdot N_A = 2500 \text{ mol} \cdot 6 \cdot 10^{23} \text{ mol}^{-1} = 1.5 \cdot 10^{27}$$

$$\Rightarrow N_{\text{Atome}} = 2 \cdot N_{\text{Moleküle}} = 3 \cdot 10^{27}$$

Beispiel Gase/Druck1

Frage I: Wie hoch ist der Protonenverschleiß?

Die Protonenquelle hat eine Effizienz von ca. 70%.

$$N_{\text{Protonen}} = 0.7 \cdot N_{\text{Atome}} = 2.1 \cdot 10^{27}$$

Füllungen für den LHC:
$$\frac{2.1 \cdot 10^{27}}{6 \cdot 10^{14}} \approx 3.5 \cdot 10^{12}$$

Wenn alle 10h neu befüllt wird reicht das Gas für

10
$$h \cdot 3.5 \cdot 10^{12} = 3.5 \cdot 10^{13} h \approx 4 \cdot 10^{9} Jahre.$$

Beispiel Gase/Druck1

Frage II: Wie viele Gasmoleküle befinden sich im Kollisionspunkt?

$$P = 10^{-7} \text{ Pa}, V = 1 \text{ m}^3, T = 5 \text{ K}, R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

Stoffmenge n pro m³:
$$n = \frac{P \cdot V}{R \cdot T} = 2.4 \cdot 10^{-9} \text{mol}$$

Gasdichte (Anzahl der Moleküle pro m³):

$$\rho_m = n \cdot N_A \text{ m}^{-3} \approx 2.4 \cdot 10^{11} \text{ Moleküle m}^{-3}$$

Beispiel Gase/Druck1

Frage II: Wie viele Gasmoleküle befinden sich im Kollisionspunkt?

Volumen der Protonenpakete im Kollisionspunkt:

$$V_p = 7.5 \text{ cm} \cdot 16 \mu \text{m} \cdot 16 \mu \text{m} \approx 2 \cdot 10^{-11} \text{m}^3$$

Anzahl der Gasmoleküle im Kollisionspunkt:

$$N_{Moleküle} = 2.4 \cdot 10^{11} \text{ Moleküle m}^{-3} \cdot 2 \cdot 10^{-11} \text{ m}^{-3} \approx 5 \text{ Moleküle}$$

Im Vergleich zur Anzahl der Protonen ist dies vernachlässigbar!

Beispiel Gase/Druck1

Weitere Fragestellung:

- Die Anzahl der Proton-Gas Kollisionen im Strahlrohr lässt sich berechnen.
- Daraus kann die "beam lifetime" (oder auch die Halbwertszeit des Strahls) berechnet werden.
 - Anknüpfungspunkte zum radioaktiven Zerfall!

Beispiel Energie²

- Vorkenntnisse:
 - Kinetische Energie
 - Magnetfelder, magn. Fluss, etc.
- Was kann gelernt werden?
 - Energie im Protonenstrahl
 - Energie in den Magneten der Detektoren
 - Energie in LHC Magneten
 - Energie der Beschleunigungsstrecken
 - Freigesetzte Energie im "beam dump"
 - Alles, was bei Vorkenntnissen steht
- Rechnungen:
 - Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?
 - Frage II: Wie viel Energie ist in den LHC-Dipolmagneten gespeicher?
 - Frage III: Wie viel Energie ist im CMS oder ATLAS Magneten gespeichert?

²Siehe auch: Cid-Vidal und Cid (2009).

Beispiel Energie²

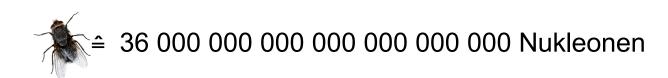
Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Proton: $7 \text{ TeV} = 1.12 \cdot 10^{-6} \text{ J}$

Beispiel Energie²

Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Proton: $7 \text{ TeV} = 1.12 \cdot 10^{-6} \text{ J}$


Beispiel Energie²

Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Proton: $7 \text{ TeV} = 1.12 \cdot 10^{-6} \text{ J}$

Energie einer Fliege (60mg) bei normaler Reisegeschwindigkeit:

$$E_{kin} = \frac{1}{2} \cdot 6 \cdot 10^{-5} \text{kg} \cdot \left(0.2 \frac{\text{m}}{\text{s}}\right)^2 = 1.2 \cdot 10^{-6} \text{J} \approx 7 \text{ TeV}$$

Beispiel Energie²

Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Paket: $7 \text{ TeV} \cdot 1.15 \cdot 10^{11} = 1.29 \cdot 10^{5} \text{ J}$

Beispiel Energie²

Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Paket: $7 \text{ TeV} \cdot 1.15 \cdot 10^{11} = 1.29 \cdot 10^{5} \text{ J}$

Energie eines Motorrads (150kg) bei erhöhter Reisegeschwindigkeit:

$$E_{kin} = \frac{1}{2} \cdot 150 \text{ kg} \cdot \left(41.7 \frac{\text{m}}{\text{s}}\right)^2 \approx 1.29 \cdot 10^5 \text{J}$$

Gesamtzahl der LHC-Pakete: N=2808

Beispiel Energie²

Frage I: Wie viel Energie ist im Protonenstrahl gespeichert?

Energie pro Paket: $7 \text{ TeV} \cdot 1.15 \cdot 10^{11} = 1.29 \cdot 10^{5} \text{ J}$

Energie eines Motorrads (150kg) bei erhöhter Reisegeschwindigkeit:

$$E_{kin} = \frac{1}{2} \cdot 150 \text{ kg} \cdot \left(41.7 \frac{\text{m}}{\text{s}}\right)^2 \approx 1.29 \cdot 10^5 \text{J}$$

Gesamtenergie eines LHC-Protonenstrahls:

 $1.29 \cdot 10^5 \text{ J} \cdot 2808 \approx 360 \text{ MJ}$

Gesamtenergie eines LHC-Protonenstrahls reicht aus, um 1808 kg Gold zu schmelzen!

²Siehe auch: Cid-Vidal und Cid (2009).

Beispiel Energie²

Frage II: Wie viel Energie ist in den LHC-Dipolmagneten gespeichert?

Die LHC-Dipolmagnete können als zylindrische Spule (14.3 m lang, 9 cm breit) mit 80 Windungen und einem Magnetfeld von 8.33 T angesehen werden. Dazu wird eine Stromstärke von 11800 A benötigt.

Magnetischer Fluss:

$$\varphi = N \cdot B \cdot A$$

$$= 80 \cdot 8.33 \text{ T} \cdot (14.3 \text{ m} \cdot 0.09 \text{ m})$$

$$\approx 1000 \text{ Wb}$$

Induktivität:

$$\varphi = L \cdot I \Leftrightarrow L = \frac{\varphi}{I}$$

$$L = \frac{1000 \text{ Wb}}{11800 \text{ A}} \approx 0.1 \text{ H}$$

Beispiel Energie²

Frage II: Wie viel Energie ist in den LHC-Dipolmagneten gespeichert?

Energie in einem Dipol:
$$E_d = \frac{1}{2} \cdot L \cdot I^2 = \frac{1}{2} \cdot 0.1 \, \text{H} \cdot \left(11800 \, \text{A}\right)^2 \approx 7 \, \text{MJ}$$

Gesamte Energie aller Dipolmagnete:

$$E_{aes} = 1232 \cdot E_d \approx 9 \text{ GJ}$$

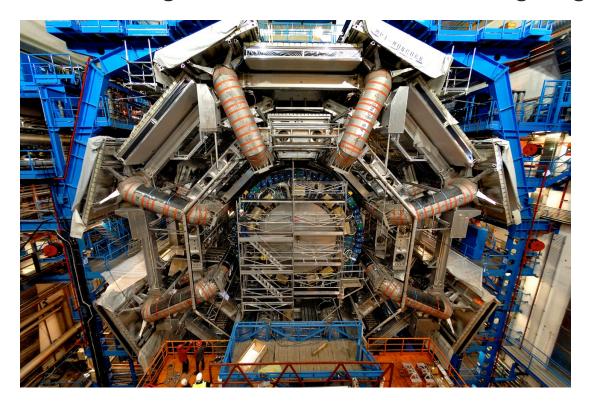
Beispiel Energie²

Frage II: Wie viel Energie ist in den LHC-Dipolmagneten gespeichert?

Energie in einem Dipol:
$$E_d = \frac{1}{2} \cdot L \cdot I^2 = \frac{1}{2} \cdot 0.1 \, \text{H} \cdot \left(11800 \, \text{A}\right)^2 \approx 7 \, \text{MJ}$$

Gesamte Energie aller Dipolmagnete:

$$E_{aes} = 1232 \cdot E_d \approx 9 \text{ GJ}$$


Vergleich mit Startenergie eines Airbus A380:

$$E_{A380} = \frac{1}{2} \cdot 560000 \text{ kg} \cdot \left(83 \frac{\text{m}}{\text{s}}\right)^2 \approx 1.9 \text{ GJ}$$

Beispiel Energie²

Frage III: Wie viel Energie ist in dem ATLAS-Toroidmagnet gespeichert?

Beispiel Energie²

Frage III: Wie viel Energie ist in dem ATLAS-Toroidmagnet gespeichert?

Lesenswert

Cid, R. (2005): Contextualized magnetism in secondary school: learning from the LHC (CERN). *Physics Education, IOP Publishing, 40*, 332-338

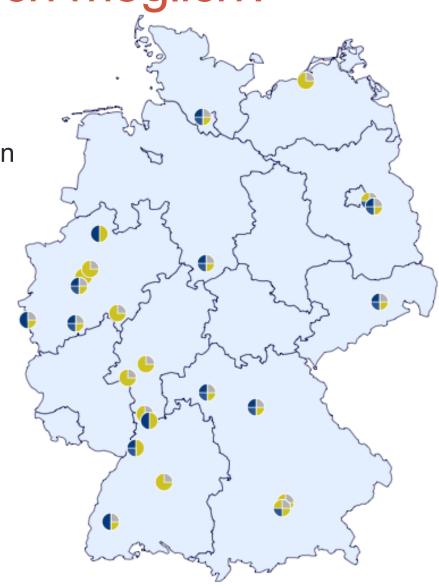
Cid-Vidal, X. & Cid, R. (2009). Taking energy to the physics classroom from the Large Hadron Collider at CERN. *Physics Education, IOP Publishing, 44*, 78-83

Cid-Vidal, X. & Cid, R. (2010). The Higgs particle: a useful analogy for Physics classrooms. *Physics Education, IOP Publishing, 45*, 73-75

Cid-Vidal, X. & Cid, R. (2011a). LHC: the emptiest space in the solar system. *Physics Education, IOP Publishing, 46*, 45-49

Cid-Vidal, X. & Cid, R. (2011). How to count 300 trillion protons travelling at the speed of light . *Physics Education, IOP Publishing, 46*, 309-311

http://www.lhc-closer.es


- Schülerlabore zur Messung von kosmischen Teilchen
 - Hamburg: http://physik-begreifen.desy.de
 - Würzburg: http://www.mind.uni-wuerzburg.de/lehr lern labor/
 - Göttingen: http://www.xlab-goettingen.de (?)

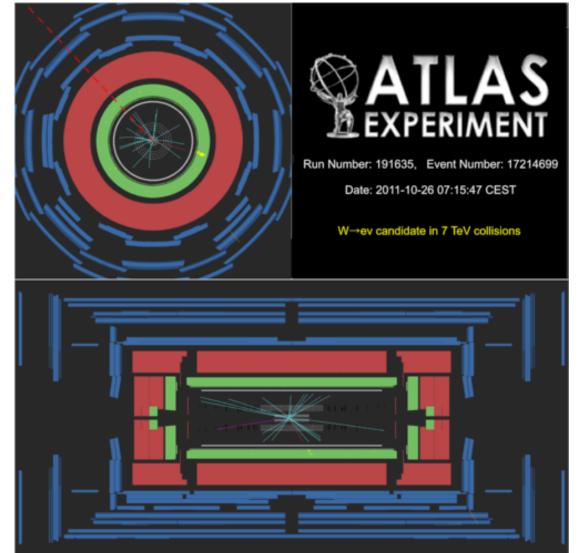
Für einzelne interessierte Schüler

- Erlangen: http://www.esfz.nat.uni-erlangen.de
- Zeuthen: http://physik-begreifen.desy.de
- Netzwerk Teilchenwelt: www.teilchenwelt.de

Netzwerk Teilchenwelt

- Zusammenschluss von 24 deutschen Instituten + CERN (Schweiz)
- Kontakt zu Teilchen- und Astroteilchenphysikern
- Angebote f
 ür Jugendliche und Lehrkr
 äfte
- Verschiedene Stufen der Mitarbeit: Erleben, Vermitteln, Erforschen


Teilchenphysik Masterclasses


- Analyse realer Daten der LHC-Experimente.
- Eintägige Veranstaltungen an Schulen oder außerschulischen Lernorten

"Cosmic"-Experimente

- Entdecken des Phänomens der kosmischen Strahlung.
- Angebot reicht von eintägigen über mehrtägige Veranstaltungen bis hinzu längeren Projekten.

- Netzwerk Teilchenwelt Materialien
 - Teilchenphysik Forschung und Anwendungen (Informationen und Anregungen)
 - Das Standardmodell der Teilchenphysik (Hintergrundinformationen)
 - Die vier Wechselwirkungen (Arbeitsblatt)
 - Der ATLAS-Detektor (Arbeitsblätter, Filmsequenzen)
 - Selbstbau einer Nebelkammer (Experimentieranleitung)
 - Teilchen-Steckbriefe (Karten, Hinweise für Lehrkräfte)

Weiterentwicklung und Erweiterung des Materials ist geplant!

Schülerbesuche am CERN

CERN

 Halbtägige Besuchsprogramme organisiert durch den CERN visits service (kostenfrei)

- Typisches Programm:
 - Einführungsvortrag
 - 2 Besuchspunkte
 - Nachmittags Besuch von Austellungen möglich
 - Geplant:
 - ab Sommer 2014 Schülerlabor am CERN (weiterer halber Tag)

Schülerbesuche am CERN

- Abgerundet werden kann eine Exkursion durch
 - Besuch internationaler Organisationen in Genf, Besuch des "physiscope" in Genf, Stopp im Einstein Museeum in Bern, Stopp im Technorama in Winterthur...

Anmeldung: Je früher desto besser!

Lehrerfortbildungen am CERN

- German Teachers Programme (Sonntag-Freitag)
 - Ca. 4 pro Jahr
 - Programm ist kostenfrei, nur Anreise sowie Verpflegungs- und Übernachtungskosten müssen selbst getragen werden.
 - Möglichkeit der Finanzierung über Netzwerk Teilchenwelt www.teilchenwelt.de
 - Termine und Anmeldungen: <u>http://education.web.cern.ch/education/Chapter1/Page3_DE.html</u>
 - Typisches Programm: <u>https://indico.cern.ch/conferenceOtherViews.py?</u> view=standard&confld=195342

Literatur und Links

Unterrichtsreihen und Material

- www.teilchenphysik.de
 - Komplette Unterrichtsreihen
- www.teilchenphysik.ch
 - Unterrichtsreiche mit Posterserie

- www.teilchenwelt.de
 - Materialien und Informationen zum Netzwerk Teilchenwelt
- www.cern.ch
 - Informationen rund um CERN

Literatur und Links

Cid, R. (2005): Contextualized magnetism in secondary school: learning from the LHC (CERN). *Physics Education, IOP Publishing, 40*, 332-338

Cid-Vidal, X. & Cid, R. (2009). Taking energy to the physics classroom from the Large Hadron Collider at CERN. *Physics Education, IOP Publishing, 44*, 78-83

Cid-Vidal, X. & Cid, R. (2010). The Higgs particle: a useful analogy for Physics classrooms. *Physics Education, IOP Publishing, 45*, 73-75

Cid-Vidal, X. & Cid, R. (2011a). LHC: the emptiest space in the solar system. *Physics Education, IOP Publishing, 46*, 45-49

Cid-Vidal, X. & Cid, R. (2011). How to count 300 trillion protons travelling at the speed of light. *Physics Education, IOP Publishing, 46*, 309-311

Kircher, E.; Girwidz, R. & Häußler, P. (2009). Physikdidaktik: Theorie und Praxis. Springer, 2009

Vielen Dank!

Anhang