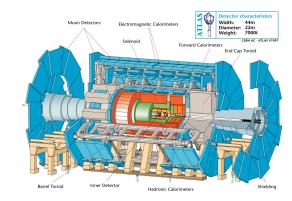
Study of Final States with τ - Leptons in GMSB Models at ATLAS

Philip Bechtle, Wolfgang Ehrenfeld, Johannes Haller

Dörthe Ludwig

April $2^{\rm nd}$ 2008

DESY ATLAS Meeting

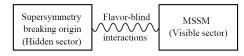


1 / 15

Dörthe Ludwig au in GMSB at ATLAS

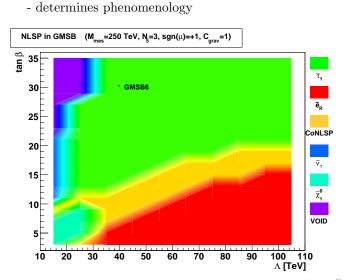
Outline

- Introduction to SUSY and GMSB
- ② Discovery Potential
- Invariant Mass
- Reconstruction Efficiencies
- **5** Conclusion and Outlook


Motivation for SUSY

- Standard Model very successful but incomplete
- SUSY promising extension
 - explanation for Dark Matter
 - unification of the coupling constants at the GUT scale $\approx 10^{16} \, \mathrm{GeV}$
 - solution to the Hierarchy Problem of the Higgs mass
- breakingmechanisms: mSUGRA, **GMSB**, AMSB
 - reduction to a few parameters
 - sufficient for
 - mass spectra
 - physical processes (branching ratios, cross sections)

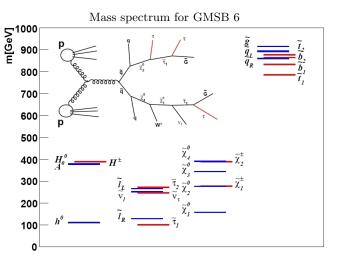
GMSB


- Gauge Mediated Supersymmetry Breaking
- breaking: coupling of messenger particles
- messenger particles give mass to the super partners of the gauge bosons, quarks and leptons
 - \Rightarrow mass of the superpartners through gauge interaction

- assumption: R-Parity conservation
- parameters
 - \bullet Λ the SUSY breaking mass scale
 - ullet M_{mes} messenger mass
 - N₅ number of equivalent messenger fields
 - $\tan\beta$ ratio of vacuum expectiation values of the Higgs fields
 - $\operatorname{sgn}\mu$ sign of the Higgsino mass term
 - \bullet $\,\mathrm{C_{grav}}$ scale factor for the gravitino mass (determines the NLSP lifetime)

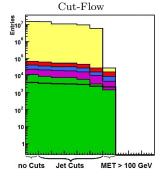
Dörthe Ludwig au in GMSB at ATLAS 4/15

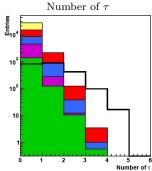
- NLSP
- LSP (Lightest Supersymmetric Particle)
- nearly massless, neutral Gravitino m(G) = O(eV)
- NLSP (Next-to-Lightest Supersymmetric Particle)

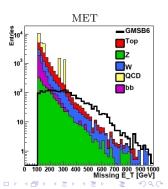


GMSB 6: $\Lambda = 40 \, \text{TeV}$ $\tan \beta = 30$ $M_{\text{mes}} = 250 \, \text{TeV}$ $N_5 = 3$

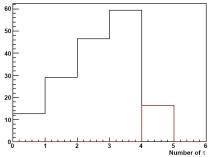
$$\left(\Lambda=40\,\mathrm{TeV}, \tan\!\beta=30\,, \mathrm{M_{mes}}=250\,\mathrm{TeV}, \mathrm{N_5}=3\,\right)$$

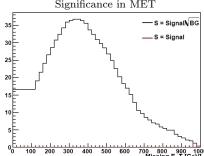

- \bullet final state: up to 4τ
- neutral gravitinos cause missing transverse energy (MET)

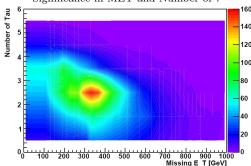

 \Longrightarrow unusual in SM processes


Cuts

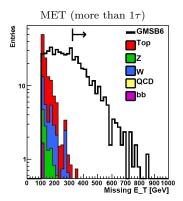

- cuts:
 - number of jets > 3
 - 1 jet: $p_T > 100 \, GeV$
 - 3 jets: $p_T > 50 \,\mathrm{GeV}$
 - $E_T > 100 \, \text{GeV}$

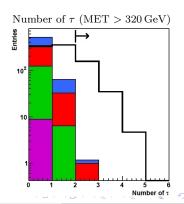

- reconstruction of hadronic τ -decays
- signal dominates in region of many τ (and much MET)
- $\mathcal{L} = 1 \, \text{fb}^{-1}$





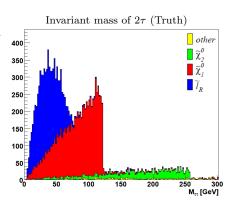
Significance in MET


- significance $\sigma = \frac{\text{\# of Signal events}}{\sqrt{\text{\# of BG events}}}$
- rises with number of τ (no background events with 4τ)
- maximum in MET at $\approx 300 \, \text{GeV}$
- 2dim: max. at 2τ , MET > 320 GeV $\Rightarrow \sigma = \frac{196}{\sqrt{1.5}} \approx 160$

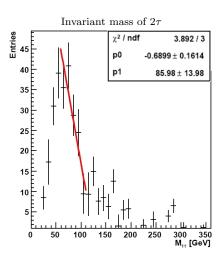

Significance in MET and Number of τ

Final Cuts

- cuts applied one by one
 - MET requiring 2τ
 - number of τ requiring MET > 320 GeV
- biggest residual background: Top
- very high discovery potential

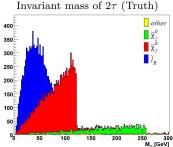

Dörthe Ludwig au in GMSB at ATLAS 9 / 15

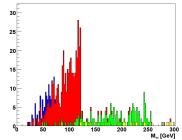
Invariant Mass


• invariant mass of $2\tau \to \text{mass edge}$

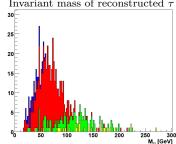
$$\begin{array}{ll} M_{\tau\tau, \rm max}^2 & = \frac{\left(m_{\rm X}^2 - m_{\tilde{\tau}_1}^2\right) \left(m_{\tilde{\tau}_1}^2 - m_{\tilde{\rm G}}^2\right)}{m_{\tilde{\tau}_1}^2} \\ \stackrel{m_{\tilde{\rm G}}=2.41 {\rm eV}}{\Longrightarrow} & \\ M_{\tau\tau, \rm max}^2 & = m_{\rm X}^2 - m_{\tilde{\tau}_1}^2 \\ M_{\tau\tau, \rm max} & = \sqrt{m_{\tilde{\chi}_1^0}^2 - m_{\tilde{\tau}_1}^2} \\ & = 121.57 \, {\rm GeV} \end{array}$$

Fit of mass edge


- apply analysis cuts
- plot invariant mass of 2τ
- distribution smeared out compared to truth because of neutrinos
- first approximation: linear fit
- very sensitive to fit range
- $M_{\tau\tau,max} = \frac{85.98 \,GeV}{0.6899} = 124.6 \,GeV$

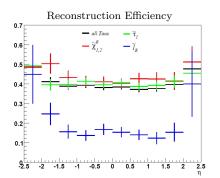

Dörthe Ludwig au in GMSB at ATLAS au 11 / 15

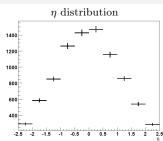
Unfortunately ...

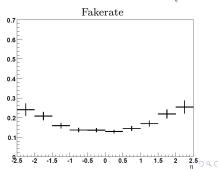

- there is a bug in HERWIG
- TAUOLA ist not correctly called \Rightarrow slepton - τ remains stable
- slepton τ is not reconstructed
- reconstructed τ coming from sleptons due to insufficient matching criteria

"True" invariant mass of reconstructed τ

Invariant mass of reconstructed τ

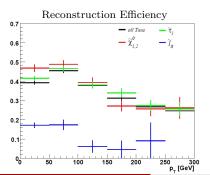

Reconstruction Efficiency and Fakerate in η

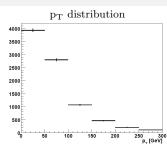

• 10000 GMSB events (no cuts on jets or MET)


• efficiency: 0.39

• fakerate: 0.15

 \bullet same problems with slepton - τ







Reconstruction Efficiency and Fakerate in p_T

- studied also efficiency in ϕ distributions are flat in ϕ
- working on comparison with a $Z^0 \to \tau \tau$ sample

Conclusion

- GMSB one possible Supersymmetric model
- ullet number of au and missing transverse energy seem applicable for isolation of the signal
- GMSB 6 high discovery potential in first data
- mass edge can be estimated

Outlook

- produce new data (bug is fixed in release 14)
- \bullet devise an algorithm to disentangle τ coming from sleptons and those coming from neutralinos
- improve fit of the mass edge
- scan the parameter space

