

Optimisation Studies for the BeamCal Design

Lucia Bortko, DESY – Zeuthen

ILD Meeting | IFJ PAN - Krakow | 24-26 Sep 2013

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 1/13

The Aim and Content

The Aim:

- compare 2 types of segmentation of calorimeter
- investigate the characteristics

Content:

- Introduction
- Simulation studies
 - SNR
 - efficiency
 - CCE
 - dependence E_{dep} vs E_e
 - energy resolution
 - spatial resolution
- Conclusion

Beam Calorimeter for ILC

Beam parameters from the ILC Technical Design Report (November 2012)

- Nominal parameter set
- Center-of-mass energy 1 TeV

BeamCal aimed:

- Detect sHEe
- Determine Beam Parameters
- Masking backscattered low energetic particles

BeamCal Segmentation

Segmentation (US)

pads size are the same

pads size are proportional to the radius

Segmentation (PS)

Similar number of channels

Energy Deposition due to Beamstrahlung

- Beamstrahlung (BS) pairs generated with Guinea Pig
- Energy deposition in sensors from BS simulated with BeCaS (Geant4)
 - → considered as Background (BG)
- RMS of the averaged BG
 - → considered as noise (for SNR)

 E_{dep} is the same, but E_{dep} /pad is different!

Shower from Single High Energy Electron

- Showers are simulated with BeCaS (Geant4)
- Investigated energies: 10, 20, 50, 100, 200, 500 GeV

Signal and RMS for both Segmentations

Core signal in layer of shower maximum (10th layer for 100 GeV)

RMS from Background (in 10th layer)

SNR in cell with maximum E_dep

• <u>Signal</u> – is maximum energy deposition in cell from sHEe (*in the core of shower and in the maximum energy deposition layer*)

• <u>Noise</u> – is RMS of the averaged BG

Efficiency of Showers Reconstruction

Charge Range Estimate

For Diamond sensor pad thickness 300 µm:

- Charge collected from MIP: 2.44 fC

- Maximum charge collected – for shower from 500 GeV electron: 12214 fC

(correspond to about 5000 MIPs)

Deposited Energy vs Energy of Electron

Energy Resolution vs Energy of Electron

Spatial Resolution (In Process)

Spatial Resolution (In Process)

Conclusion

> Performance of BeamCal for two different sensor segmentations was compared

- Number of readout channels is kept similar
- Signal from sHEe nearly independent of the segmentation
- Energy deposition per pad from Beamstrahlung differs significantly
- Proportional segmentation improves the signal-to-noise ratio
- Proportional segmentation gives better reconstruction efficiency
- > The charge range has been estimated
 - Collected charge per pad from sHEe nearly independent of the segmentation
 - Collected charge per pad from BS for US in 6 times more than for PS
- Energy deposition was investigated
 - Dependence between energy of electron and deposited in calorimeter energy is good linear Coefficient of linearity 59.
 - Dependence energy resolution vs energy of electron is calculated and parameterized.
 Calorimeter gives good energy resolution: 3% (for 50GeV HEe); 1,1% (500GeV)

Thank you for your attention!

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 16/13

Backup slides

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 17/13

SNR for 50 GeV Electron

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 18/13

SNR for 20 GeV Electron

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 19/13

SNR for 10 GeV Electron

Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 20/13

Charge range estimate

For Diamond sensor pad thickness 300 µm:

- Charge collected from MIP: 2.44 fC

- Maximum charge collected – for shower from 500 GeV electron: 12214 fC (correspond to about 5000 MIPs)

Efficiency of Showers Reconstruction

