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Outline

Introduction

� Scattering at hadron colliders.
� Jet evolution with parton showers.
� Jet production with matrix element calculations.

ME+PS merging: Combining the two approximations.

� Traditional approach for combining ME and PS.
� Unitarised merging.
� Next-to-leading order multi-jet merging.

Summary

. . . let’s see how far we get!
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Scatterings in particle physics

Proton

Proton

Parton

� We collide nucleons to investigate the interactions of their
constituents.

� Nucleon constituents are called partons, and they are bound into a
nucleon by QCD (Quantum Chromodynamics).
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Scatterings in particle physics

e+ e−

Hard scattering

Proton

Proton

Parton

� At the very core of an interaction, only a few highly accelerated
particles are produced by the interaction of two partons.

� The highly accelerated particles from the interaction decelerate by
emitting radiation.

� The products are bound into hadrons (p, π,Λ, . . . ), which may decay
further. This produces collimated sprays of particles called jets.
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Scatterings in particle physics

e+ e−

Radiation cascade. . .
. . . of gluons and quarks.

Proton
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Scatterings in particle physics

� The number of resolvable jets is unknown.

� Jet evolution has to be approximated.

� Scattering cross sections for few “seed” partons, i.e. jet
production, can be calculated ”exactly”. 3 / 32



Scatterings in particle physics

if that’s already complicated, there is further

� . . . initial state radiation.

� . . . multiple scatterings of proton constituents.

� . . . the remnants of the smashed proton.
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Jet evolution vs. jet production

So how do we interpret an event?

This is a problem of resolution:

Does the radiation only shift the properties of a jet (= jet evolution)?
Do we resolve the radiation as additional jet (= jet production)?

4 / 32



Jet evolution vs. jet production

So how do we interpret an event?

This is a problem of calculability:

Jet evolution described by infinite number of (quasi-classical) partons.
Jet production described by fixed number of QM-interfering partons.

Relying exclusively on either will fail to describe LHC data.
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Jet evolution: Parton showers

• Based on collinear approximation. Any number of emissions is
possible.

• Re-sums leading terms of the perturbative series to all orders into
multiplicative no-emission probabilities (≈ Sudakovs).

• Interface to hadronisation and decay of composite particles.

=⇒ Describes jet evolution. 5 / 32



Parton shower concepts

The PS is an all-order object
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Jet production: Matrix element calculations

• Calculate the QM transition probability for a (small) number of
well-separated partons.

• Such configurations are very likely in high energy collisions.

• Calculation “complete” up to a fixed (perturbative) order, with well
controlled uncertainty. Calculations are by definition inclusive.

=⇒ Describes jet (-seed) production. 7 / 32



Combining ME and PS

MEs describe jet production, including correlations between partons.
. . . but break down for soft/collinear partons.
PSs describe jet evolution, including any number of partons.
. . . but cannot describe well-separated partons.

For realistic prediction, we need to combine these complementary
approximations.

But. . .

. . . we need to make sure that we use only one calculation for any

configuration, i.e. we have to avoid overlaps.
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One solution

1. Define two regions of jet resolution

• ME region: States with all parton separations above a
regularisation cut-off ρMS.

• PS region: States with at least one separation below ρMS.

2. Use fixed-order calculations in the ME region. Then, n-parton states
are by definition inclusive, i.e. contain n or more partons.

⇒ Fixed-order calculations for n an n + 1 partons overlap.

To remove this overlap, remember the PS:

PS
h
σME

+0

i
= σPS

+0| {z }
exclusive due to Sudakov factor

+ σPS
+1| {z }

exclusive due to Sudakov factors

+ σPS
+ ≥ 2| {z }

inclusive

⇒ Convert the inclusive states of the ME calculation into exclusive
states by multiplying PS Sudakovs.

3. Fill in states in the PS region with the parton shower.

4. Combine reweighted calculations. Minimise dependence on ρMS.
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CKKW(-L)1 merging

After Sudakov reweighting, we are allowed to combine the ME calculations.

However, in the PS region, the shower does more than adding Sudakovs. It e.g.
also uses dynamical renormalisation and factorisation scales.

⇒ For a smooth transition between states “above” and “below” ρMS, use
the same running scales in the ME calculations as well.

⇒ Reweight MEs with αs- and PDF-ratios.

Then combine the reweighted ME samples. Until recently, this meant:

� Start the PS on the reweighted ME configuration. Throw away the event
if the PS produced another state in the ME region.

� Add the outcomes of the measurements on all accepted events.

There is a left-over dependence on ρMS, which is ameliorated by cancellations
between the ME (above ρMS) and the PS real corrections (below ρMS).

The dependence on ρMS enters beyond the “accuracy of the shower”.

1 JHEP 0111 (2001) 063 (Catani, Krauss, Kuhn, Webber), JHEP 0205 (2002) 046 (Lönnblad) . . . 10 / 32
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Illustration
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Figure: Separation between the first and second jet for W+jets, when clustering to

exactly two jets. The coloured lines show the different reweighted multi-parton MEs.

Lower inset shows the improvement compared to the default shower.
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CKKW-L results
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Figure: k⊥-separation between the first and second jet for W+jets, when clustering to

exactly two jets. The bands are obtained by varying the PS starting scale in
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2

MW, 2MW]
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. . . however
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Figure: Ratio of the inclusive cross section after merging, compared to the tree-level

inclusive cross section.

13 / 32



The problem with CKKW-L

The ME includes terms that are not compensated by the PS approximate
virtual corrections (i.e. Sudakov factors).

These are the improvements that we need to describe multiple hard jets!

But they should not invalidate the inclusive (0-jet) cross section!

Traditional approach: Don’t use a too small merging scale.

→ Uncancelled terms numerically not important.

New approach1:

Use a (PS) unitarity inspired approach exactly cancel the dependence

of the inclusive cross section on ρMS, thus preserving the

inclusive cross section.

1 JHEP1302(2013)094 (Leif Lönnblad, SP), JHEP1308(2013)114 (Simon Plätzer) 14 / 32



One step back

The KLN theorem states: The sum of virtual and real corrections is IR-finite.

= finite+ dσ
(

σ
( ))

PS unitarity tells us: The sum of approximate PS virtual and real corrections
vanishes. . .

= 0+ dσPS

(
σPS

( ))

. . . because the virtual corrections are simply −1× integrals of splitting kernels

= 0+ σ
(

σ
( ))

⊗
(
− dp2

⊥dzdφPq→qg

)
dp2
⊥dzdφPq→qg

Thus, when including the +n-jet calculation, we improve the PS approximate
virtual corrections by instead subtracting the full integrated +n-jet result. . .

= 0+ dσ
( ))

dσ
(

−

. . . and recover the inclusive cross section. =⇒ Unitarised ME+PS merging
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Comments on UMEPS

This sketch can directly be extended to the case when we have (αs -,

PDF- or Sudakov-) weighted +n-jet states (B̂n), e.g. two-jet merging:

〈O〉 =

Z
dφ0

(
O(S+0j)

»
B0 −

Z
s

bB1→0 −
Z

s

bB2→0

–
+

Z
O(S+1j)

»bB1 −
Z

s

bB2→1

–
+

Z
· · ·
Z
O(S+2j) bB2

)

We can get the integrated version of the real-emission matrix elements by
projecting onto an underlying Born configuration. Such configurations are
available anyway since we need them to perform the Sudakov weighting.

The ”subtract what you add” prescription means that this will produce
counter-events with negative weight.

NB: UMEPS combines features of CKKW-L and LoopSim.
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UMEPS result
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Figure: Ratio of the inclusive cross section after merging, compared to the tree-level

inclusive cross section.

⇒ UMEPS preserves the inclusive cross section. However, the statistical error
can be larger than in CKKW-L (due to positive and negative weights).
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UMEPS results
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Figure: p⊥ of the W-boson in the Sudakov region (for 2-jet merging, ECM = 7 TeV).

Lower inset shows the comparison to default PYTHIA8.

⇒ CKKW-L overshoots for (very) low merging scales due to uncancelled terms.

⇒ UMEPS describes the Sudakov peak nicely.
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Is UMEPS enough?

UMEPS is a leading-order method, i.e. it contains only approximate
virtual corrections.

We want to use the full NLO results whenever possible.

Do NLO multi-jet merging for UMEPS. Basic idea:

� Subtract approximate UMEPS O(αs)-terms, add back full NLO.

� To preserve the inclusive (NLO) cross section, add approximate NNLO.

⇒ UNLOPS1.

1 JHEP1303(2013)166 (Leif Lönnblad, SP), contains also NL3 = CKKW-L@NLO.

Similar scheme in JHEP1308(2013)114 (Simon Plätzer)
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The UNLOPS method
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The UNLOPS method
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The UNLOPS method
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The UNLOPS method

UNLOPS merging of zero and one parton at NLO:
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This is best done internally in the event generator.

The formula will not be on the exam.
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UNLOPS recap

Combine NLO calculations for different jet multiplicities . . .

. . . and add further tree-level calculations on top . . .

. . . and have one single inclusive sample with X+(0,. . . , M)@NLO

. . .and X+(M+1,. . . ,N)@LO

Aim: Use NLO for as many multiplicities as possible,
Aim: then use LO for more jets,
Aim: and only then use PS.

⇒ Reduce µF , µR dependence due to NLO input,
⇒ reduce µQ dependence because ME’s fill most of the phase space.

. . . and do this in a process-independent way.
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UNLOPS results (W+jets)
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NLO merged results (H+jets)
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Figure: Ratio of the inclusive cross section for gg→H after merging (H+0)@NLO,
(H+1)@NLO and (H+2)@LO, compared to the NLO inclusive cross section.

⇒ NL3 (=CKKW-L@NLO) has problems for processes with large, loop-driven
NLO corrections. 23 / 32



NLO merged results (squarks+jets)
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Figure: ∆φ12 and p⊥2 for u-squark pair production (meu = 500 GeV,mχ0
= 500 GeV, BR(eu → uχ0) ≈ 1) after

merging (squarks+0)@NLO1, (squarks+1)@LO and (squarks+2)@LO.

1 arXiv:1305.4061 (Gavin, Hangst, Krämer, Mühlleitner, Pellen, Popenda, Spira)
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. . . or try something else yourself!

. . . delicious Cornflakes@NLO.
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Summary

� To describe data, we need to infuse parton showers with
matrix elements.

� CKKW-L tree-level merging is included in PYTHIA8.
But it does not work for arbitrary small merging scales.

� UMEPS tree-level merging is included in PYTHIA8.
UMEPS almost cancels the merging scale dependence.
But it’s not NLO.

� Two NLO merging schemes are implemented in PYTHIA8:
NL3 and UNLOPS.

� UNLOPS is our preferred choice.

� All merging schemes in PYTHIA8 run on LHEF input, e.g.
POWHEG-BOX or Madevent input.

26 / 32



Thank you for your time.
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Back-up.
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CKKW(-L) merging

In traditional ME+PS approaches, there is a left-over dependence on ρMS,
which is ameliorated by cancellations between the ME (above ρMS) and the PS
real corrections (below ρMS). E.g.

dσME+PS = f0(ρ0)
n˛̨
MS+1,me

˛̨2
dΦME

1 αs(ρ1)Θ(ρ(S+1,me)− ρMS) f1(ρ1)
f0(ρ1)

ΠS+0 (ρ0, ρ1)ΠS+1 (ρ1, ρc)

+
˛̨
MS+0,me

˛̨2
dΦME

0 P (z) dρ1dz1αs(ρ1)Θ(ρMS − ρ(S+1,ps)) f1(ρ1)
f0(ρ1)

ΠS+0 (ρ0, ρ1)ΠS+1 (ρ1, ρc)
o

The merging scale dependence vanishes if the red terms are equal, because the
blue Θ-functions would add to one.
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UMEPS definitions
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In CKKW-L, wn contains an additional factor ΠS+n(xn, ρn, ρMS).

UMEPS induces this through
∫
s B̂n+1→n instead.
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NNLO with UNLOPS

Note that in UNLOPS, the lowest-multiplicity cross section is not reweighted.
Terms entering due to PS weights are O(α2

s)PS ×O(α1
s)ME and

O(α0
s)PS ×O(α2

s)ME
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NNLO with UNLOPS

It is simple to remove this single O(α2
s)-term. Subtracting the term, it is

possible to replace the lowest multiplicity cross section by the full NNLO result
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⇒ The cross section formula becomes simpler again. The inclusive cross
section is nowZ

dφ0O(S+0j)
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Z
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«
which is just the NNLO result.

We need an NNLO generator to produce
eeB0 or B0 (for gg →H, B0 is only

dependent on the H-rapidity spectrum).
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