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Outline 
�  Concepts in main stream cosmology 

�  Motivation 

�  Light-Cone Averaging Prescription 

�  Application: Luminosity-distance (dL) Redshift (z) 
Relation in the Concordance Model. 

1.  Consequences for H0 and the cosmological 
constant 

2.  Probing the Primordial Power Spectrum 

 



Concepts in Cosmology-
Geometry 



Concepts in Cosmology- 
Matter 
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Main Stream Cosmology 
�  Assume FLRW = homogeneous and isotropic metric. 

⇒ Implicit averaging 

�  Modeling the energy momentum tensor as a perfect 
fluid. 

�  Pert. give rise to structure, highly non-linear at some 
scale. Background unchanged. 

⇒ Implicitly neglected the possibility of  backreaction. 

⇒ GR is non-linear. Averaging and solving do not commute. 
Are we getting the correct answer? 

Green and Wald 2010 





Motivation and “Spoiler” 

-2.0 -1.5 -1.0 -0.5 0.0

-0.5

0.0

0.5

1.0

Log10HzsL

DHm
-
M
L

dL (z) ≈
1+ z
H0

dz '
Ωm0 (1+ z)

3 +ΩΛ00

z

∫



Explanations 
�  Changing the energy content of  the Universe: Cosmological 

Constant, Dark Energy… 

*Challenge: Fine-tuned, coincidence?, fundamental theory? 

�  Changing Gravity: f(R), scalar-tensor theory… 

*Challenge: Solar system tests, fine-tuned, fundamental theory? 

�  Changing the metric: void models 

*Challenge: Matching with CMB and other probes, fine-tuned in 
space =>giving up the Copernican principle  

o  Changing the equations of  motion: averaging, smoothing out 
small scale inhomogeneities… 

o  *Challenge: Proper Averaging, matching with data, magnitude 
of  the effect  



 LCDM Consistency? 

SDSS 

2.73 K 



Perturbations at Low Redshift 
�  Measurements of  SNIa è Mostly neglected, naively 

argued as irrelevant ~10-10 (Amplitude of  the 
primordial power spectrum) 

The concordance model of  cosmology: 

�   SN and before PLANCK ~73% CC, H0 =73.8-/+2.4 
km/sec/Mpc 

�   PLANCK 68% CC, H0 =67.4-/+1.4 km/sec/Mpc 



Average dL on the past LC as a 
function of  redshift 

A= redshift, V= light-cone coordinate 



LC Averaging 

�  Useful for interpreting light-like 
signals in cosmological 
observations. 

�   Hyper-surfaces using meaningful 
physical quantities: Redshift, 
temperature etc. 

�  Observations are made on the 
light-cone. Volume averaging give 
artefacts and the matching with 
data is not clear. 

�  Past attempts: Coley 0905.2442; 
Rasanen 1107.1176, 0912.3370 

 



Light Cone Averaging 1104.1167 

�  A-priori - the averaging is a geometric procedure, 
does not assume a specific energy momentum 
tensor. 

 

 

 

The prescription is gauge inv., {field reparam. A->A’(A), 
V->V’(V)} and invariant under general coordinate 
transformation. A(x) is a time-like scalar, V(x) is null. 

This gives a procedure for general space-times. 
Novelty: Exact treatment of  geodesics.  

 



GLC Metric and Averages 

�  Ideal Observational Cosmology – Ellis et al. 

�  Evaluating scalars at a constant redshift for a geodetic observer. 
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Detour: - Exact Result - Flux 
LC average of  flux for any space-time amounts to 
the area of  the 2-sphere! (Nambu-Goto action) 

 

γ = ρ2 sinθ

ds ≡ ρ = alm (w0, zs )Ylm (θ,ϕ )
l,m
∑

d 2θ∫ γ = d 2θ∫ ρ2 sinθ = alm (w0, zs )
2

l,m
∑ > a200

Φ =
L

4πdL
2 ; dL (z) = (1+ z)

2dS; dS
2 ≡

dS
dΩO

=
γ

sin θ

Anisotropies always “mimic” acceleration! 



GLC Metric 
�  FLRW -0th order. We shall use up to 2nd order. 

 

 

�  τ can be identified as the time coordinate in 
the synchronous gauge of  arbitrary space-time. 

 

IBD et al. ’12 

 



Averaged dL at Constant 
Redshift 

�  Ethrington’s Reciprocity Law, for any 
spacetime: 

 

 

SPT: 
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The Perturbed 
Quantities 

�  EFE gives Poisson eq. that connects the 
density contrast and the gravitational 
potential: 

 

�  Both the area distance and the 
measure of  integration are expressed in 
terms of  the gravitational potential and 
its derivatives. Vector and tensor pert. 
do not contribute. 

dL = dL
(0)[1+ dL

(1)(Ψ,∂Ψ...)+ dL
(2)(Ψ,∂Ψ...)+...]

d 2 θ γ∫ = dΩ∫ [1+µ (1)(Ψ,∂Ψ...)+µ (2)(Ψ,∂Ψ...)+...]

δ ≡
ρ
ρ0
−1= 2
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The Optimal Observable - 
Flux 

�  LC average of  flux for any space-time is the 
area of  the 2-sphere! (Nambu-Goto action) 

�  dL or μare more biased 

dL{ } = dL
FLRW [1+ fd (z)]

Φ ~ dL
−2{ } = (dL

FLRW )−2[1+ fΦ(z)]

fΦ(z) =
dk
k
Pk∫ [ fΦ(1,1)(k, z)+ fΦ2 (k, z)]



Interpretation & Analysis 
�  dL is a stochastic observable – mean, dispersion, 

skewness... 

 

In the flux - The dominant contribution are Doppler terms 
~k2 

�  Any other function of  dL  gets also k3 contributions – 
lensing contribution, dominates at large redshift, z>0.3 

�  In principle the upper limit can be infinite. In practice, 
until where do we trust our spectrum? Linear treatment 
k<0.1-1 Mpc-1 and non-linear treatment k<30h Mpc-1 

 

 



Interpretation & Analysis 
�  Superhorizon scales are subdominant. 

�  At small enough scales, the transfer function 
wins. 

�  At intermediate scales, the phase space factor 
competes with the initial small amplitude. 

�  In the non-linear regime (δ~1) we use a fit 
from simulations. (Takahashi et al. 1208.2701) 
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Linear PS of  the grav. 
potential 



“Doppler2” term in Flux (CDM) 
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Lensing2 Term – Not in Flux 
(CDM)  
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Fractional corrections to the 
Flux and dL, kUV=10h,30h 

Mpc-1 

 



Distance Modulus Average and Dispersion, at z<0.1 
Doppler dominates, at z>0.3, Lensing dominates. 
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Bottom Line – Part 1 
�  Flux is the optimal observable. Different 

bias or “subtraction” mechanisms, in order 
to extract cosmological parameters. 

�  Inhomogeneities do not affect the 
measured CC at an observable level. They 
do increase the dispersion – see next topic. 
1302.0740 

�  Inhomogeneities do affect the Hubble 
parameter at and its dispersion at a 
percent level. 1311.xxxx?  



General Lessons 
� Unlike volume averages: No divergences 

�  The contribution from inhomogeneities 
is several orders of  magnitude larger 
than the naïve expectations due to the 
large phase space factor. 

�  Our approach is useful whenever dealing 
with information carried by light-like 
signals travelling along our past light-
cone. 



New Probe: Lensing Dispersion 

�total

µ

(z  1) < 0.12

IBD, Kalaydzhan 1309.4771 



Closer Look on the Lensing 
Integrand 



Lensing Dispersion 
�  Current Data up to z~1.3 

�  Most Conservative Approach: Constrains late time power 
spectrum and/or numerical simulations. 

�  h(k,z) incorporates the dependence on the EOS 
parameter w(z) etc. 

�  The dispersion can be used to constrain EOS, σ8 
primordial power spectrum etc. 
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Primordial Power Spectrum 

�  Many inflationary models predict enhanced 
spectra (Particle production, features, several 
inflationary epochs etc.) 

�  Even with PLANCK, Ly-alpha – measurements only 
up to k=1 Mpc-1 



Planck Measurements 

�  Even with PLANCK, Ly-alpha, etc. only probe 
~8.5 e-folds out of  60. 

�  Few observables, huge degeneracy between 
models.  

The power spectrum is the actual observable and 
we need to measure it for as many e-folds 
possible! 
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Lensing Dispersion of  SNIa 
�  Model dependent- LCDM and HaloFit model. 

(Smith et al. 2003, Takahashi et al. 1,2 2012) 

�  An overall upper bound on dispersion. Any 
enhancement of  the power spectrum will 
increase the dispersion. WHAT’S THE 
CORRECT SPECTRUM?? 
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Power spectrum 
�  HaloFit cannot be trusted for large running or 

running of  running. 

�  Treat F(k,z)=PNL/PL as a transfer function, at z=1. 

�  2 methods: 1) step function 2) interpolated 
function. Both extremely underestimating. 

�  kUV=320h. kUV=30h degrades results but still cuts 
out parameter space allowed by PLANCK. 
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Conclusions - part 2 
Lensing of  SNIa – Model dependent, current data! 
With conservative estimates already rules out a big 
region of  parameter space.  

•  We expect numerical simulations to give confirm 
our results and even derive better bounds.  

•  A likelihood analysis is necessary for confirmation 
of  the effect. 

•  Future detection will allow a very narrow region. 

•  A novel probe for cosmology!  



Open Issues/Future 
Prospects 

1.  Using lensing to constrain other observables and other 
spectra. 

2.  More accurate calculation of  the lensing effect.  

3.  Matching the back-reaction effect to other probes: CMB, 
LSS 

4.  Applying LC averaging to cosmic shear, BAO, kSZ, strong 
lensing etc. 

5.  Other applications, averaging of  EFE ….Many open 
theoretical and pheno. problems. 



Example: “string vs. field 
theory”  
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Conclusions - part 1 

�  Flux is the optimal observable. Different bias or 
“subtraction” mechanisms, in order to extract 
cosmological parameters. 

�  Irreducible Scatter - The dispersion is large ~ 
2-10% ΛCDM, of  the critical density depending 
on the spectrum.  

�  The effect is too SMALL AND has the WRONG 
z dependence to simulate observable CC! It 
DOES affect H0 at a measurable level! 



Prescription Properties 
�  Dynamical properties: Generalization of  Buchert-Ehlers 

commutation rule: 

 

 

�  For actual physical calculations, use  EFE/ energy momentum 
tensor for evaluation. Example: which gravitational potential to 
use in evaluating the dL-z relation. 

�  Averages of  different functions give different outcome 

F(S) ≠ F S



Lensing Dispersion 
�  Current data has SN up 

to z~1.3 

�  Statistical Analysis: 
dispersion<0.12 in 
mag. (March et al. 
2011) 

�  Extended halofit, Inoue 
& Takahashi 2012, up 
to k=320h Mpc-1 

⇒ Can constrain the 
amplitude on scales 
1<k<30h to roughly 
10-7 and better. 
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Constraints from Spectral 
Distortions (deviations from BB 

spectrum) 
�  Chluba, Erickcek, IBD 2012: 



<dL>(z), <f(dL)>(z) 

A= redshift, V= light-cone coordinate 



Statistical Properties 

�  In principle, we can now calculate 
<dL>(z) to first order in the gravitational 
potential ~ void model. 

�  In order not to resort to a specific 
realization we need LC+statistical/
ensemble average. If  perturbations 
come from primordial Gaussian fluc. 
(inflation)  

dL{ }= dL(0) 1+ µ (1)dL
(1){ }+ dL

(2){ }+...!
"

#
$

(Var dL
dL
FLRW ) = (dL

(1) )2{ }



Functions of  dL 
�  Standard pert. theory: the gravitational 

potential, density contrast etc. are gaussian 
random variables. 

�  Overbars and {…} denote ensemble average, 
<..> denote LC average. 

 

�  Averages of  different functions of  scalars 
receive different contributions. 

Φ ~ dL
−2{ } = (dL

FLRW )−2[1+ fΦ(z)]

dL{ } = dL
FLRW [1+ fd (z)]

F(S){ } ≠ F S{ }



kmax=1 Mpc-1 



GLC to FLRW NG 1st Order 

Ψ̂(η+,η−,θ
a ) ≡ Ψ(η, r,θ a )

γ̂0
ab(η+,η−,θ

a ) ≡ γ0
ab(η, r,θ a ) = diag(r−2, r−2 sin−2θ )



LC Calculation and LCDM 

�  Pure FLRW: 

�  Transform from the GLC metric to the longitudinal gauge 

�  Perturbed: 



Statistical Properties 

�  In principle, we can now calculate 
<dL>(z) to first order in the gravitational 
potential ~ void model. 

�  In order not to resort to a specific 
realization we need LC+statistical/
ensemble average. If  perturbations 
come from primordial Gaussian fluc. 
(inflation)  

dL{ }= dL(0) 1+ µ (1)dL
(1){ }+ dL

(2){ }+...!
"

#
$



BR of  Statistical and LC 
Averaging 

�  The mean of  a scalar: 

 

 

=> Effects are second order, but we have the full 
backreaction of  the inhomogeneities of  the metric at this 
order! 

�  The variance to leading order:  



Dominant Terms 

 

�  Doppler effect due to the perturbation of  the 
geodesic. 

 

�  The Lensing Term: 
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LC Calculation and LCDM 
�  Pure FLRW: 

�  Perturbed: 

�  Comparing by defining an effective redshift and 
averaging at constant redshift and w=w0  



Power Spectrum 
�  We use the WMAP7 best fit value and the transfer 

function of  Eisenstein & Hu 1997 for CDM. 

�  We are interested in the overall magnitude so we neglect 
the baryonic oscillations. 

�  Only subhorizon fluc. H0<k. Superhorizon fluc. are 
subdominant. 

�  No UV (k ∞) or IR (z 0, k  0) divergences. 



Non-Trivial Averages 
�  Off-Center LTB 

�  Anisotropic Models (Except Kantowski-Sachs) 

�  More general metrics. 

�  Perturbed FLRW 

 

Application: calculating the averaged luminosity – distance 
redshift relation 

 

Past attempts: Vanderveld et al. – post Newtonian, Barausse et 
al., Kolb et al. – SG superhorizon, Pyne at al.,  



Averaged dL at Constant 
Redshift 

�  We write the GLC exact results in terms of  2nd order in standard 
cosmological perturbation theory (SPT) in the Poisson Gauge. 

�  Novelty: In principle, exact treatment of  the geodesic equations 
and the averaging hyper-surface for any spacetime and any DE 
model, as long as the geodesic equation is unchanged. 

�  Previous attempts are limited to perturbations about FLRW and 
had to solve order by order: Vanderveld et al. – post Newtonian, 
Barausse et al. 2005, Kolb et al. 2006 – SG superhorizon, Pyne 
at al 2005…  

�  Rebuttal : Hirata et al., Geshnizjani et al. 



Universe Composition Today 

�  CC/DE becomes relevant only at z~1, 
Coincidence Problem? 

�  Based on CMB, LSS and SNIa observations.  
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