Theory focus: collider phenomenology

Markus Diehl Deutsches Elektronen-Synchroton DESY

76th PRC, Hamburg, 24 October 2013

Theory group: structure and staff

Collider phenomenology

M.D., J. Reuter, F. Tackmann, A. Weiler, G. Weiglein;

J. Blümlein, P. Marquard,

T. Riemann

Particle Cosmology

W. Buchmüller, T. Konstandin, A. Ringwald, A. Westphal, NN

String theory

I. Kirsch, V. Schomerus,

J. Teschner

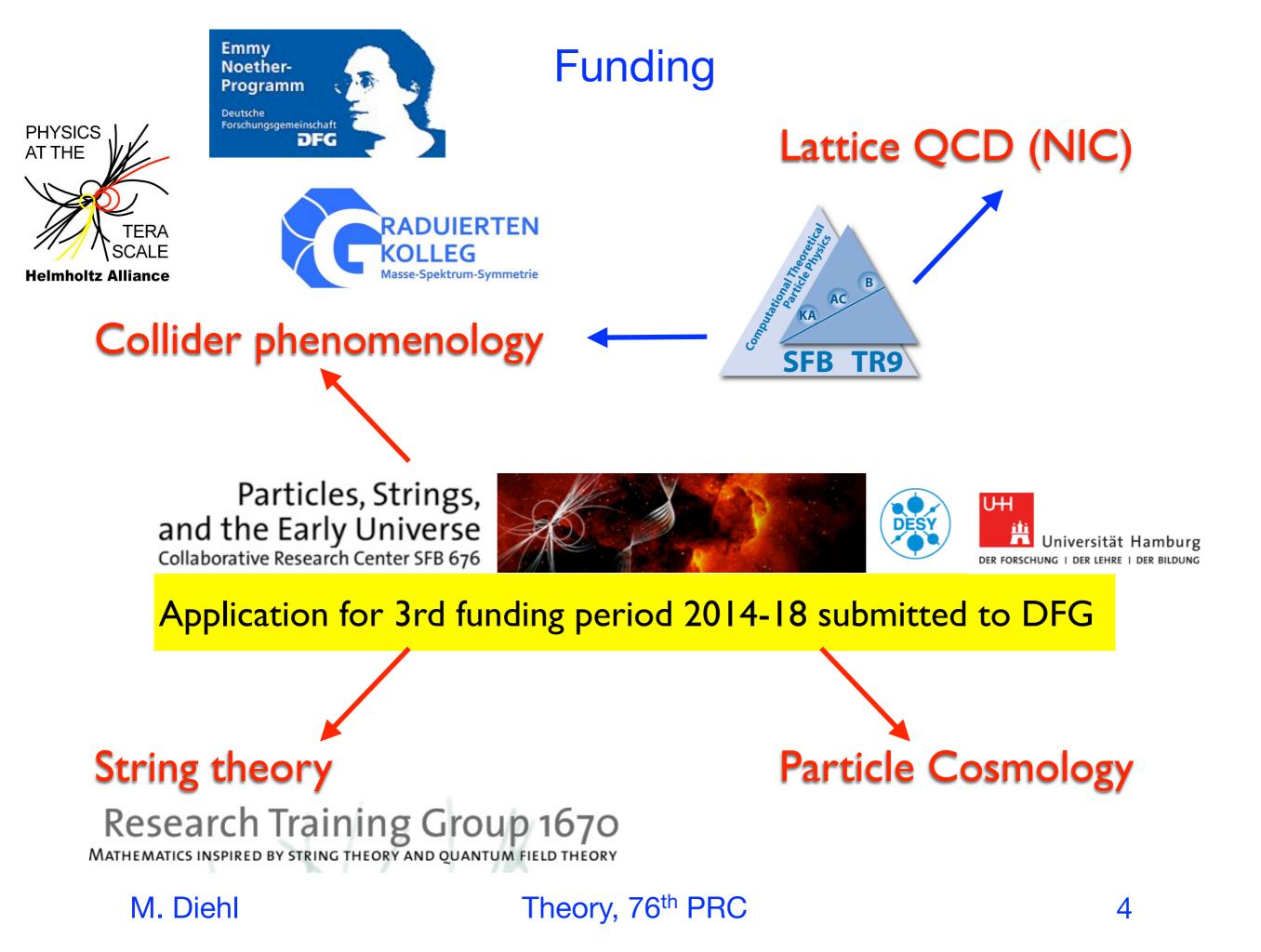
Lattice QCD (NIC)

K. Jansen, H. Simma, S. Schaefer, R. Sommer

Staff news

Collider phenomenology

A. Weiler: leave of absence from Sept 2013 to Aug 2015 for a fixed-term staff position at CERN


P. Marquard: tenure track position in Zeuthen since June 2013 four-loop calculations, inclusion of masses, development of methods, high-performance computer algebra

Particle Cosmology

NN: O. Lebedev (5 yr postdoc) → professor in Helsinki position in process of being filled

Lattice QCD (NIC)

S. Schaefer will reinforce lattice group starting November algorithms for dynamical fermions, small lattice spacings

Funding

Collider phenomenology LHCphenOnet

New EU Network: The Higgs quest - exploring symmetry breaking at the LHC HIGGSTOOLS Jan. 2014 - Dec 2017

Lattice QCD (NIC)

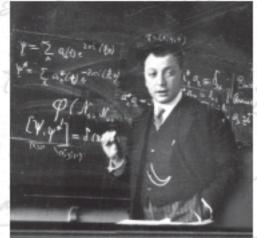
major EU computing time awards with strong NIC participation

String theory

coordinated by DESY one postdoc position filled here

Individual grants

Humboldt Foundation JSPS (Japan) Studienstiftung Joachim Herz Foundation


Wolfgang Pauli Centre

WOLFGANG-PAULI-CENTRE

PIER 👹 Eine Patherschaft der Universität Hamburg und DESV

Wolfgang Pauli Centre Inauguration Symposium 17 April 2013

DESY Hamburg, Germany (Auditorium)

The Wolfgang Pauli Centre (WPC) unites the various theory groups of Hamburg University and DESY In the areas of particle physics, astrophysics and cosmology, mathematical physics, condensed matter, quantum optics and chemical physics. (Photos: Pauli Archives CERN) M. Gaberdiel (ETH Zurich) K. von Meyenn (MPI Munich) M. Peskin (SLAC) S. Sachdev (Harvard) G. 't Hooft (Utrecht) D. Vollhardt (Augsburg)

Speakers

11-13 Sept: Workshop on Nonequilibrium Techniques in Cosmology and Condensed Matter

coming up:

7 Nov: Pauli Lecture:

Johannes Henn (IAS Princeton) From the harmonic oscillator to elementary particle physics

planned for winter term 2013/14

- Mini-Workshop on AdS/CFT and Condensed Matter Systems
- Lecture Series on Topological
 Defects in Phase Transitions

M. Diehl

Conferences and workshops Hosted or (co)organized

HELMHOLTZ

DESY THEORY WORKSHOP SEPT. 24 - 27, 2013

DESY, Hamburg, Germany

NONPERTURBATIVE QFT: METHODS AND APPLICATIONS

C. Vafa (Harvard University)

PLENARY SESSIONS

S. Catterall (Syracuse University)D. Jafferis (Harvard University)N. Drukker (King's College London)Z. Komargodsky (WI Rehovot)G. Dunne (Connecticut University)G. Korchemsky (IPhT Saclay)D. Gaiotto (PI Waterloo)M. Luty (UC Davis)A. Gonzales-Arroyo (UA Madrid)M. Marino (Geneva University)J. Jäckel (Heidelberg University)R. Myers (PI Waterloo)

DESY Heinrich-Hertz Lecture on Physics

Sept. 24 - 27, 2013

A. Ramos (DESY)
R. Rattazzi (EPFL Lausanne)
S. Razamat (Princeton University)
K. Rummukainen (Helsinki Univ.)
M. Shifman (UM Minneapolis)
H. Wittig (Mainz University)

Sept. 25, 2013

- 1st GATIS Fellow meeting, London, Feb.
- Monte Carlo Tools for Physics beyond the SM, Hamburg, Apr.
- ECFA Linear Collider Workshop, Hamburg, May
- String Pheno 2013, Hamburg, July
- QCD@LHC, Hamburg, Sept.
- Anomalous Quartic Gauge Couplings, Dresden, Sept
- Semi-inclusive QCD Processes at the LHC, Liebenberg, Oct.

M. Diehl

Teaching

• lectures and seminars (Berlin, Dortmund, Dresden, Hamburg, Hannover, Postdam)

★ summer 2013

Einführung in die Teilchenphysik Theoretical Astroparticle Physics and Cosmology Introduction to String Theory Seminar on Mathematical Aspects/Methods of Theoretical Physics

★ winter 2013/14

Higgs Physics Standard Model Quantum Field Theory and Introduction to Elementary Particle Theory Theoretical Cosmology Introduction to Integrable Models Group Theory and Lie Algebras Theoretische Physik B für Studierende des Lehramts Workshop Seminar onSupergravity and Inflation

schools: lecturing and/or (co)organization

School on Computer Algebra and Partcle Physics (Zeuthen, Mar.) Non-perturbative Renormalisation (Natal, Brazil, Mar.) String Steilkurs (Hamburg, Apr.) DESY Summer Student Programme (Hamburg+Zeuthen, July/Aug.) Summer School on Moduli Spaces in Algebraic Geometry and Physics (HH, Aug.) Fermilab/CERN hadron collider physics school (CERN, Aug.) LHCPHENOnet School (Cracow, Sept.) Linear Collider Physics School (Hamburg, Oct.) Autumn School on Particle Cosmology (Göttingen, Oct.)

M. Diehl

LHC physics discussions: ATLAS, CMS, Theory

LHC Physics Discussions Go to parent category | iCal export | View - | Create -ATLAS/CMS + Theory Managers: Borras, K.; Meyer, A.; Moenig, K.; Schoerner-Sadenius, T.; Weiglein, G.; Ehrenfeld, W.; Weiler, A.; Melzer-Pellmann, I.; South, D. November 2013 11 Nov LHC Physics Discussion: QCD October 2013 28 Oct LHC Physics Discussion: High-lumi LHC physics case September 2013 09 Sep LHC Physics Discussion: Top July 2013 08 Jul LHC Physics Discussion: SUSY June 2013 10 Jun LHC Physics Discussion: Higgs February 2013 04 Feb LHC Physics Discussions: Beyond the 14 TeV LHC

Particle phenomenology

after the first LHC runs and the discovery of a Higgs boson which with present precision looks fairly standard-model like

- investigate nature of electroweak symmetry breaking
 - properties of the new particle (couplings, spin, CP)
 - \star what is the Higgs potential, which dynamics is at its origin?
- search for new physics, construct and test models

- baryon asymmetry of the universe \rightarrow CP violation
- neutrino sector
- \star unification of forces
- precision calculations in the Standard Model and its extensions
 - ★ especially (but not only) in the strong sector ←
 - ★ precision determination of SM parameters

M. Diehl

Particle

Cosmology

Theory, 76th PRC

Lattice

String Theory

Activities of the group: an incomplete overview

Construct and test models

- SUSY scenarios
 Composite/Little Higgs models
 GUTs, string inspired models
- test against constraints from colliders, cosmology, high-precision measurements, ...
 - ★ fit/constrain parameter space
 - phenomenology of simplified models
- flavor physics

Precision calculations

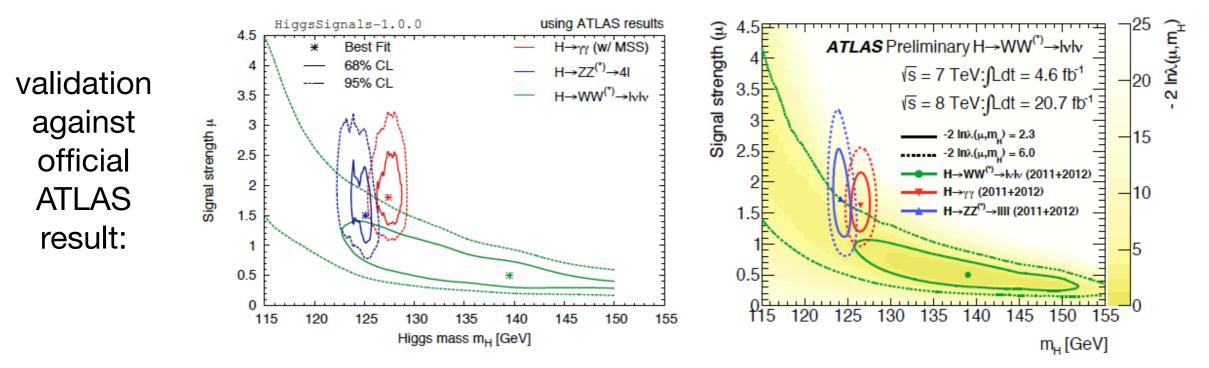
- multiloop and multileg calculations
 - ★ development of new methods ↔
 mathematics and computer algebra
 - ★ apply to strong and e.w. sector
- standard candle processes \rightarrow PDFs, α_s , quark masses
- factorization, resummation, effective field theories → jet physics, ...
- multiparton interactions
- SUSY at one-loop accuracy and beyond

Tools for the HEP community

- Monte Carlo generators
 - * WHIZARD (J. Reuter): emphasis on new physics; major upgrade for LHC run II and for ILC
 - **★** GENEVA (F. Tackmann): combine higher-order resummation with fully exclusive Monte Carlo
- HiggsBounds and HiggsSignals; FeynHiggs (G. Weiglein)
- ATOM: Automated Tester of Models (A. Weiler)
- PDF evolution code and parameterizations (J. Blümlein)

M. Diehl

following slides: some selected highlights

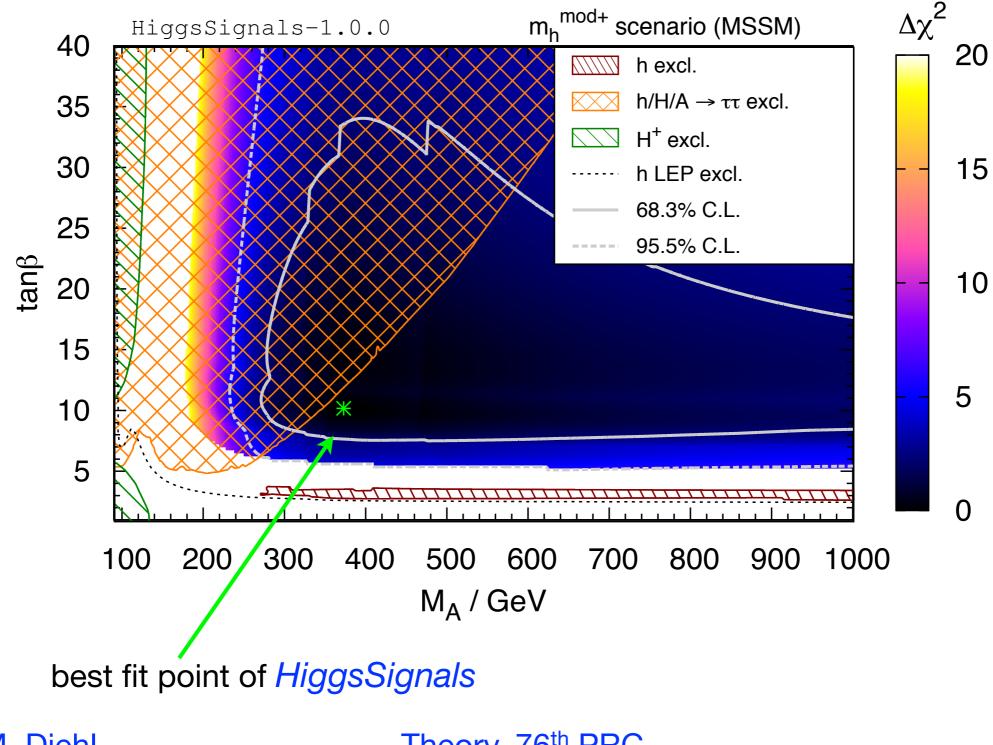

HiggsBounds and HiggsSignals

P. Bechtle,, G. Weiglein, ..., 2008, '12, '13

Programs that use the experimental information on cross section limits (*HiggsBounds*) and observed signal strengths (*HiggsSignals*) for testing theory predictions

HiggsSignals: Test of Higgs sector predictions in arbitrary models against measured signal rates and masses

Systematic uncertainties and correlations of signal rates, luminosity and Higgs mass predictions taken into account

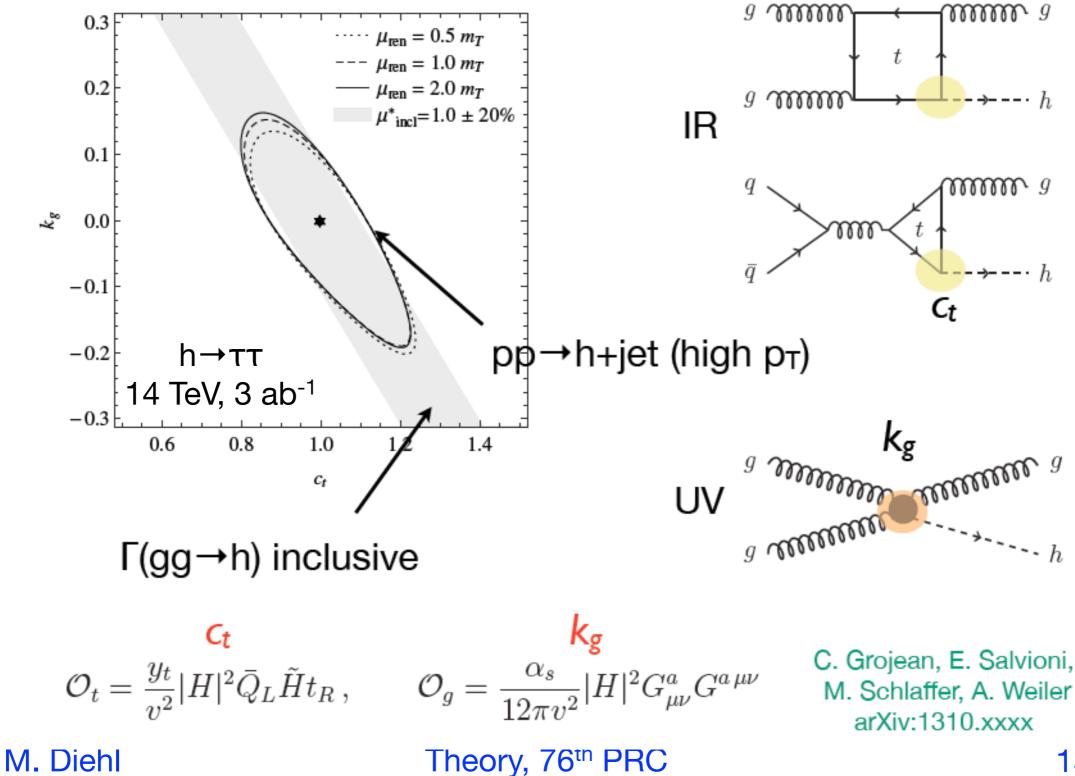


(a) HiggsSignals result on the best-fit regions (b) Official ATLAS result from [44]. obtained using the mass-centered χ^2 method. The data on $H \to WW^{(*)}$ is only available for

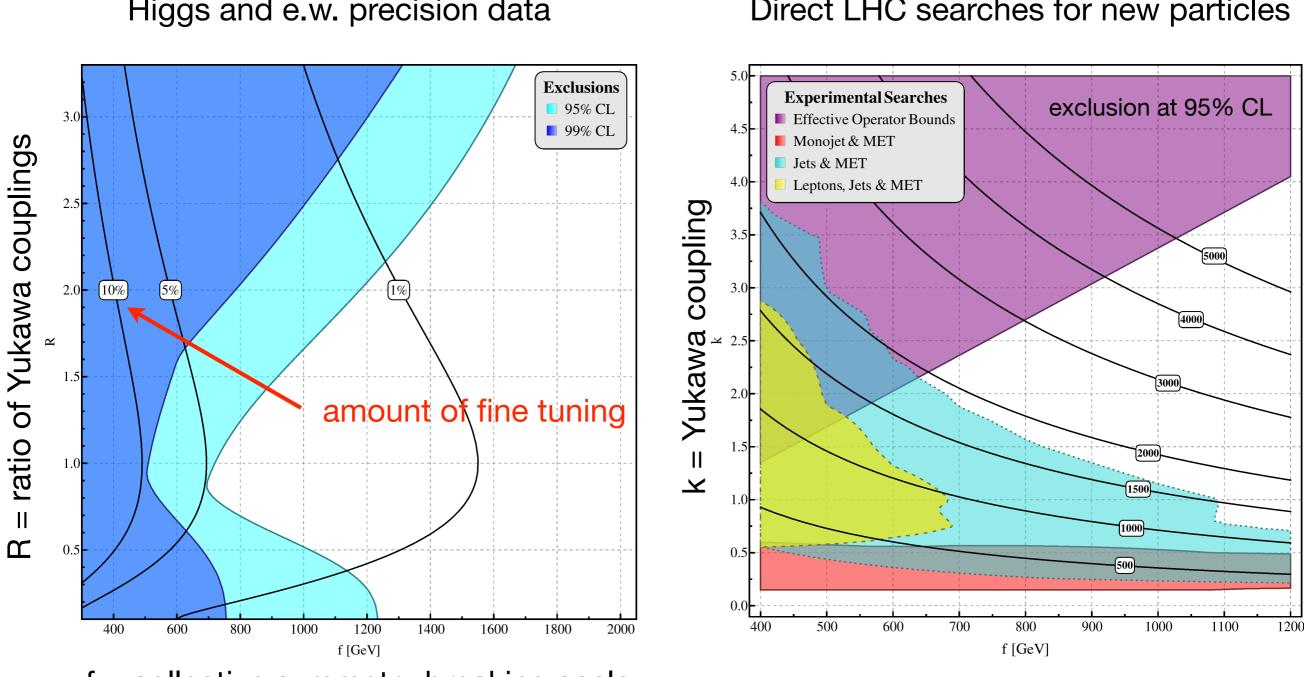
 $m_H \le 150 \text{ GeV}.$ M. Diehl

Example for combined use of both programs

Best fit point and $\Delta \chi^2$ distribution from *HiggsSignals* and LEP exclusion limits in the MSSM (m_h^{mod} scenario) vs. LHC exclusion limits



M. Diehl


Higgs production:

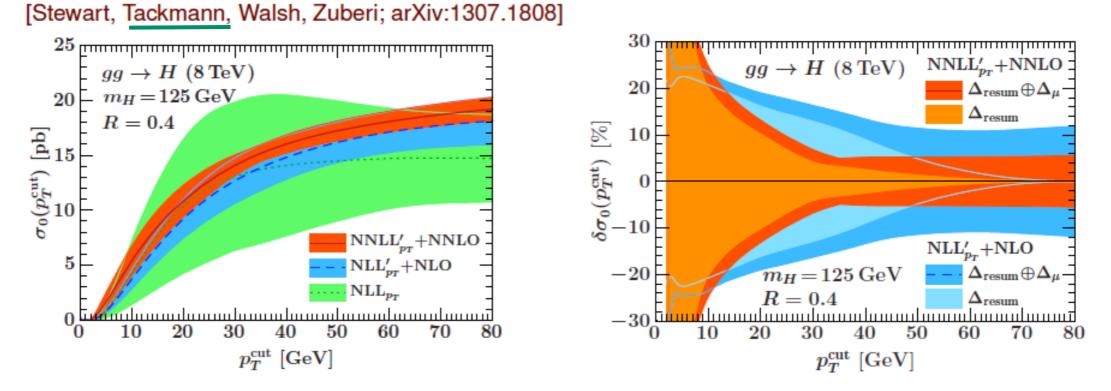
probing top partners and the UV stabilization mechanism

Degeneracy in gluon fusion, break by boosting the Higgs

Interpreting the LHC data: Littlest Higgs with T parity

Higgs and e.w. precision data

J. Reuter, M. Tonini, M. de Vries 2013

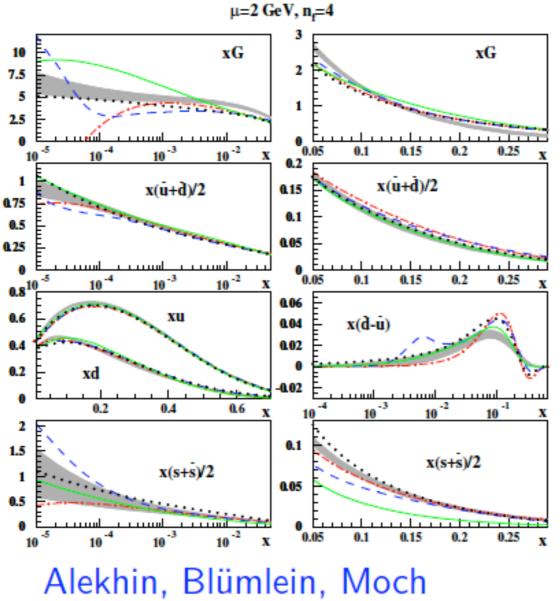

Direct LHC searches for new particles

f = collective symmetry breaking scale

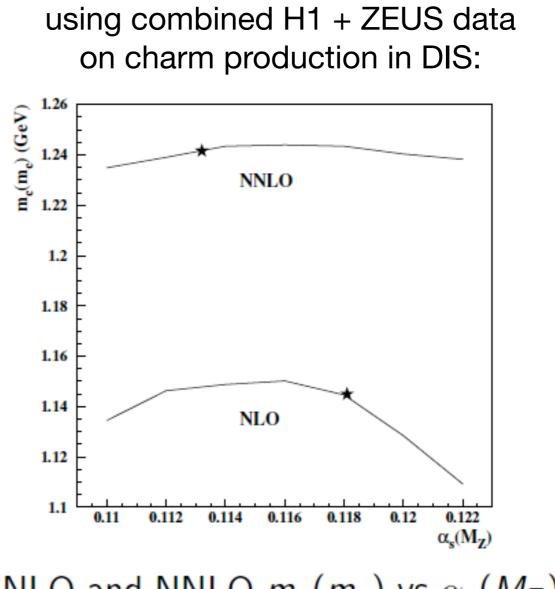
Resummed predictions for Higgs + 0 jet production

Higgs measurements divide data into exclusive categories based on number of jets, decay kinematics, etc.

- H + 0 jets cross section $\sigma_0(p_T^{\text{jet}} < p_T^{\text{cut}})$ important in $H \to WW$ and $H \to \tau \tau$ analyses
- resum $\log(p_T^{\text{cut}}/m_H)$ terms using SCET


Systematic and careful uncertainty analysis required for reliable predictions

• Jet binning analyses require full theory correlation matrix for $\{\sigma_0, \sigma_{\geq 1}\}$


$$C = \begin{pmatrix} \Delta_{\mu 0}^2 & \Delta_{\mu 0} \, \Delta_{\mu \geq 1} \\ \Delta_{\mu 0} \, \Delta_{\mu \geq 1} & \Delta_{\mu \geq 1}^2 \end{pmatrix} + \begin{pmatrix} \Delta_{\mathrm{resum}}^2 & -\Delta_{\mathrm{resum}}^2 \\ -\Delta_{\mathrm{resum}}^2 & \Delta_{\mathrm{resum}}^2 \end{pmatrix}$$

Uncertainties due to unresummed higher-order jet clustering logarithms
 M. Diehl Theory, 76th PRC

Precision determination of PDFs, $\alpha_{\rm S}$ and $m_{\rm c}$

Alekhin, Blümlein, Moch new NNLO PDF analysis DIS + LHC DY & $t\bar{t}$ data

NLO and NNLO $m_c(m_c)$ vs $\alpha_s(M_Z)$ Alekhin, Blümlein, Daum, Lipka, Moch collaboration theory \leftrightarrow HERA experimentalists

On the way of completion: 3 Loop Massive Wilson Coefficients 5 of 8 coefficients have been calculated by now.

M. Diehl

Theory, 76th PRC

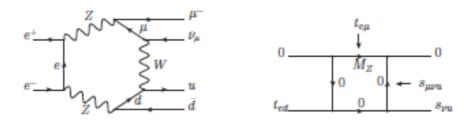
18

M. Diehl

 $a_{gq}^{(3)}$

Theory, 76th PRC

19


$$\begin{split} &= G_{1}^{2}T_{P} \Biggl\{ \frac{(N^{2}+N+2)}{(N-1)N(N+1)} \Bigl(\frac{84}{3}B_{4} - 96\zeta_{4} \Bigr) - 2 \biggl[-\frac{29(N^{2}+N+2)}{27(N-1)N(N+1)} S_{1}^{4} \\ &+ \frac{2(275N^{4}+472N^{3}+951N^{2}+598N+99)}{81(N-1)N^{2}(N+1)^{2}} S_{1}^{3} + \biggl[\frac{14(N^{2}+N+2)}{9(N-1)N(N+1)} S_{2} \\ &- \frac{2P_{0}}{81(N-1)N^{3}(N+1)^{3}} \biggr] S_{1}^{2} + \biggl[-\frac{4P_{1}}{243(N-1)N^{4}(N+1)^{4}} \\ &- \frac{2(209N^{3}+376N^{2}+609N+418)}{27(N-1)N(N+1)} S_{2} + \frac{104(N^{2}+N+2)}{27(N-1)N(N+1)} S_{3} - \frac{16(N^{2}+N+2)}{9(N-1)N(N+1)} S_{2,1} \biggr] S_{1} \\ &+ \frac{(N^{2}+N+2)}{3(N-1)N(N+1)} S_{2}^{2} + \frac{2P_{2}}{243(N-2)(N-1)^{2N^{4}}(N+1)^{3}(N+2)^{4}} \\ &+ \frac{2P_{2}}{3(N-2)(N-1)^{2N^{4}}(N+1)^{4}(N+2)^{2}} S_{2} - \frac{64(N^{2}+N+2)}{(N-1)^{2N^{2}}(N+1)^{2}(N+2)} S_{-1} S_{2} \\ &- \frac{4P_{4}}{81(N-2)(N-1)^{2N^{4}}(N+1)^{4}(N+2)^{2}} S_{2} - \frac{64(N^{2}+N+2)}{(N-1)^{2N^{2}}(N+1)^{2}(N+2)} S_{-1} S_{2} \\ &- \frac{4P_{4}}{81(N-2)(N-1)^{2N^{4}}(N+1)^{3}(N+2)^{2}} + \frac{100(N^{2}+N+2)}{9(N-1)N(N+1)} S_{4} \\ &+ \biggl[\frac{10P_{5}}{3(N-2)(N-1)^{2N^{4}}(N+1)^{3}(N+2)^{2}} + \frac{64(N^{2}+N+2)S_{-1}(N)}{27(N-1)N(N+1)^{2}} S_{-1} \biggr] S_{-2} \\ &- \frac{64(N^{2}+N+2)}{9(N-1)^{2N^{4}}(N+1)^{3}(N+2)^{2}} \biggr[S_{-3}-S_{2,1}+S_{-2,-1} \biggr] + \frac{8(35N^{3}+64N^{2}+111N+70)}{27(N-1)N(N+1)^{2}} S_{2,1} \\ &- \frac{16(N^{2}+N+2)}{9(N-1)N^{2}(N+1)^{2}} (S_{-1}+S_{-2,-1} \biggr] + \frac{8(35N^{3}+64N^{2}+111N+70)}{27(N-1)N(N+1)^{2}} S_{2,1} \\ &- \frac{16(N^{2}+N+2)}{9(N-1)N^{2}(N+1)^{2}} (S_{-1}+S_{-2,-1} \biggr] + \frac{8(35N^{3}+64N^{2}+111N+70)}{27(N-1)N(N+1)^{2}} S_{2,1} \\ &- \frac{16(N^{2}+N+2)}{9(N-1)N^{2}(N+1)^{2}} S_{1} + \frac{9(N-1)^{2}N^{3}(N+1)^{3}(N+2)^{2}}{27(N-1)N(N+1)^{2}} S_{2,1} \\ &- \frac{16(N^{2}+N+2)}{9(N-1)N^{2}(N+1)^{2}} S_{1} + \frac{9(N^{2}+N+2)}{9(N-1)N(N+1)^{2}} (10S_{1}^{2}+S_{2}) \\ &+ 2 \biggl[\frac{2P_{1}}{9(N-1)N^{2}(N+1)^{3}} (N+2)^{2} + \frac{152(N^{2}+N+2)}{9(N-1)N(N+1)^{3}} S_{1} \biggr] S_{1} \\ &+ 2 \biggl[\frac{16(3N^{4}+97N^{3}+178N^{2}+188N^{2}+188N^{2}+183N^{2}+27N+19)}{27(N-1)N(N+1)^{2}} S_{1} \biggr] \\ &+ 2 \biggl[\frac{16(3N^{4}+97N^{3}+178N^{2}+205N+78)}{243(N-1)N(N+1)^{3}} + \frac{16(N^{2}+N+2)}{27(N-1)N(N+1)^{3}} S_{1} \biggr] \\ &+ 2 \biggl[\frac{16(3N^{4}+97N^{3}+178N^{3}+201N^{2$$

$$\begin{split} &+ \left[-6 \left[\frac{16(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_1 - \frac{16(8N^3 + 13N^2 + 27N + 16)}{27(N - 1)N(N + 1)^2} \right] - 2N_F \left[\frac{8(N^2 + N + 2)}{3(N - 1)N(N + 1)} S_1 \right] \\ &- \frac{8(8N^3 + 13N^2 + 27N + 16)}{9(N - 1)N(N + 1)^2} \right] \right] \phi_2 + \left[\frac{512(N^2 + N + 2)}{9(N - 1)N(N + 1)} - \frac{224(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_F^4 \right] \\ &+ C_A C_F T_F \left\{ \frac{96(N^2 + N + 2)}{(N - 1)N(N + 1)} \left(96(A - \frac{32}{3}B_4) - 2 \right] \left[\frac{29(N^2 + N + 2)}{27(N - 1)N(N + 1)} S_F^4 \right] \\ &- \frac{2P_8}{81(N - 1)^2N^2(N + 1)^2(N + 2)} S_1^4 + \left[\frac{4P_{10}}{243(N - 1)^2N^4(N + 1)^4(N + 2)^3} \right] \\ &- \frac{2P_1}{9(N - 1)N(N + 1)} S_2 \right] S_1^2 + \left[-\frac{4P_{10}}{243(N - 1)^2N^4(N + 1)^4(N + 2)^3} \right] \\ &- \frac{2P_{11}}{27(N - 1)N(N + 1)} S_2 + \frac{424(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_4 + \frac{32(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_{2,1} \right] \\ &- \frac{16(N^2 + N + 2)}{(N - 1)N(N + 1)} S_{2,1} \right] S_1 + \frac{61(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_2 + \frac{16(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_{1} \\ &- \frac{2P_{12}}{27(N - 1)^2N^2(N + 1)^2(N + 2)} S_1 + \frac{61(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_1 + \frac{16(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_1 \\ &- \frac{8P_{13}}{27(N - 1)^2N^2(N + 1)^2(N + 2)} S_{-1} S_2 - \frac{8P_1}{81(N - 1)^2N^2(N + 1)^2(N + 1)^3(N + 2)^2} S_2 \\ &+ \frac{32(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_4 + \left[\frac{88(N^2 + N + 2)}{9(N - 1)N(N + 1)} S_1 \\ &- \frac{16(52N^4 + 95N^3 + 210N^2 + 137N + 36)}{9(N - 1)N(N + 1)} S_1 \\ &- \frac{16(52N^4 + 95N^3 + 210N^2 + 137N + 36)}{9(N - 1)N(N + 1)} S_1 \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)^2(N + 2)} S_{-1} \\ &- \frac{32(N^2 + N + 2)}{9(N - 1)N(N + 1)^2(N + 2)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 + N + 2)}{9(N - 1)N(N + 1)} S_{-1} \\ &- \frac{16(N^4 +$$

Multileg calculations at one loop

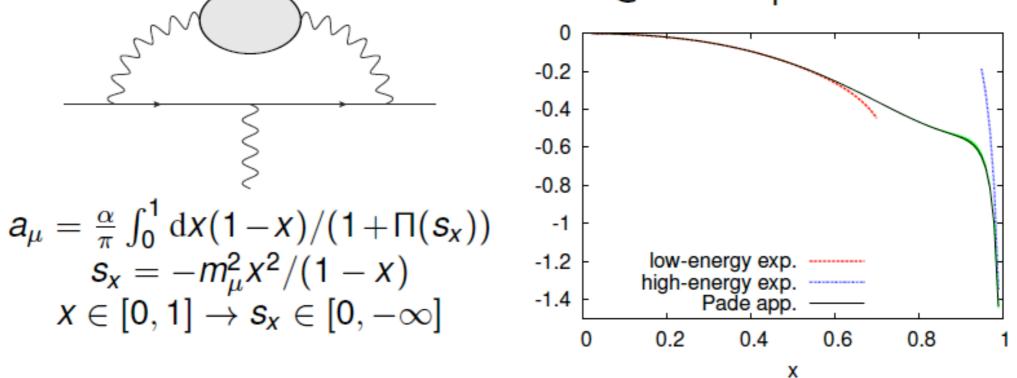
NLO contributions to massive $2 \rightarrow ...5, 6, 7...$ production at LHC, ILC, and meson factories

New algebraic approach, replacing tensor reduction by contractions with external momenta

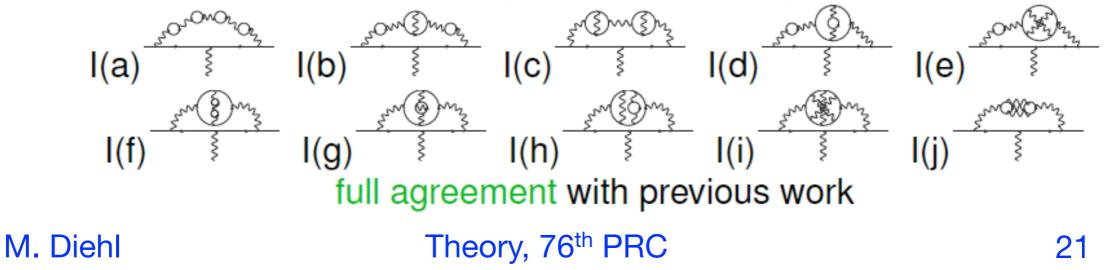
A six-point topology (a) leading to four-point functions (b) with realistically vanishing Gram determinants.

A reduction of tensor $l_5^{\mu\nu}$ is replaced by analytic sums $\sum_{b}^{1,s}, \sum_{a}^{2,st}$ $q_{a\mu}q_{b\nu}l_5^{\mu\nu} = \frac{1}{4}\sum_{s=1}^5 \left\{ \frac{\binom{s}{0}_5}{\binom{0s}{5}} (\delta_{ab}\delta_{as} + \delta_{5s}) + \frac{\binom{s}{5}_5}{\binom{0s}{5}} [(\delta_{as} - \delta_{5s})(Y_{b5} - Y_{55}) + (\delta_{bs} - \delta_{5s})(Y_{a5} - Y_{55})(Y_{b5} - Y_{55})] \right\} l_4^{[d+],s}$ $+ \frac{1}{\binom{0}{0}_5} \sum_{s=1}^5 \frac{\sum_{b}^{1,s}}{\binom{0s}{5}} \sum_{t=1}^5 \sum_{a}^{2,st} l_3^{st},$ T. Riemann

M. Diehl

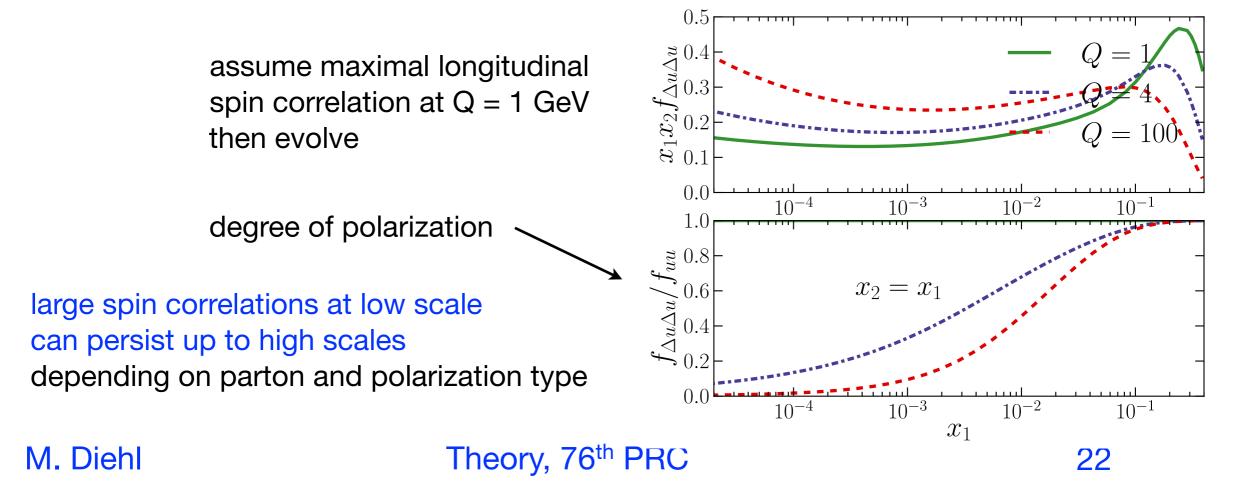

Theory, 76th PRC

20


Muon anomalous magnetic moment at five loops: analytic computation

P.A. Baikov, A. Maier, P. Marquard, arXiv:1307.6105

vacuum polarization function $\Pi(s_x)$ @ four loops in QED



new numerical analysis of various diagram classes

Multiparton interactions at the LHC

- several partons of each proton interact in same pp collision
- importance increases with energy
- complex QCD dynamics, esp. due to correlations between partons
- parton spin correlations
 - * affect rate and distributions in gauge boson pair prod'n (MD, T. Kasemets 2012)
 - large spin correlations found in constituent quark models
 Q: washed out by evolution to high scales? (MD, S. Keane, T. Kasemets 2013)

Conclusions

- The theory group is very active and visible
- vacant staff positions filled or in process of being filled
- strong engagement in networking and teaching
- broad range of research in collider phenomenology
 - ★ Standard Model and beyond
 - closely connected with experiment, esp. with LHC and ILC Terascale Alliance, LHC Higgs Cross Section Working Group, ILC TDR, European Strategy Update, Snowmass Process
 - **±** strong connections with cosmology, strings and lattice
 - ★ complementary activities in Hamburg and Zeuthen