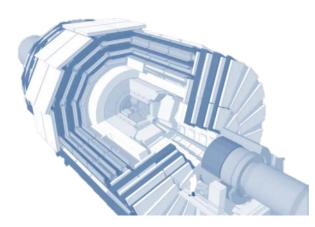
LHC Phase II Upgrade R&D ATLAS, CMS, LHCb

ATL

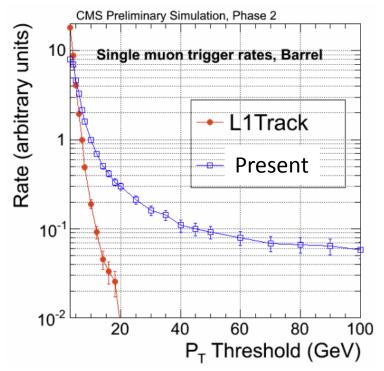
Lutz Feld, RWTH Aachen KET-Jahrestreffen, Bad Honnef, 23. 11. 2013


Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030. [European Strategy for Particle Physics Update 2013]

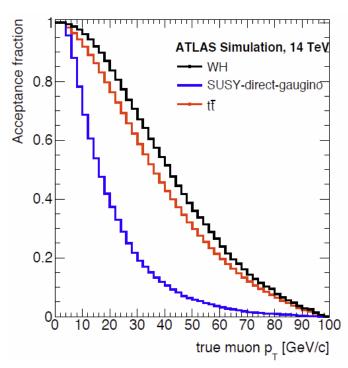
Phase II Upgrades

- from LHC design to ultimate performance
 - luminosity $1x10^{34}$ cm⁻²s⁻¹ \rightarrow $5x10^{34}$ cm⁻²s⁻¹ leveled (ATLAS + CMS), $4x10^{32}$ cm⁻²s⁻¹ \rightarrow $2x10^{33}$ cm⁻²s⁻¹ (LHCb)
 - integrated luminosity 300/fb → 3000/fb (ATLAS + CMS), 5/fb → 50/fb (LHCb)
 - → new and more precise measurements, extended reach for discoveries IF detector performance can be preserved / improved

x5 x10



- the price to pay:
 - − pile-up 20 \rightarrow 140-200 (ATLAS+CMS), 2 \rightarrow 5 (LHCb)
 - particle densities x5-10
 - radiation damage x10
- the casualties (radiation damage and/or performance loss)
 - pixel
 - tracker
 - trigger
 - end-cap calorimetry, electronics
 - end-cap muon system, electronics
- the brave (in general)
 - calorimetry
 - muon system
- when?
 - installation mainly in 'long shut down 3' currently foreseen 2022-2023 (ATLAS+CMS) partly already in 'long shutdown 2' currently foreseen 2018 (LHCb)
 - R&D NOW


Trigger Challenge

- more luminosity \rightarrow more interesting events but also more background
- only useful if interesting events can still be triggered and read-out
- high pile-up and particle densities lead to decreased resolution at trigger level
 → trigger rates increase beyond capacity of trigger/DAQ system

matching of muon system tracks with tracker tracks

- \rightarrow improved precision of pt measurement at trigger level
- \rightarrow large rate reduction

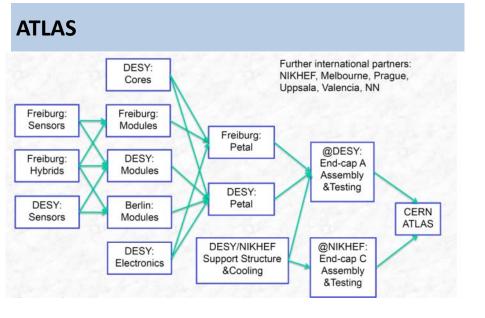
simply increasing trigger thresholds would kill the signal

General Survival & Improvement Concepts

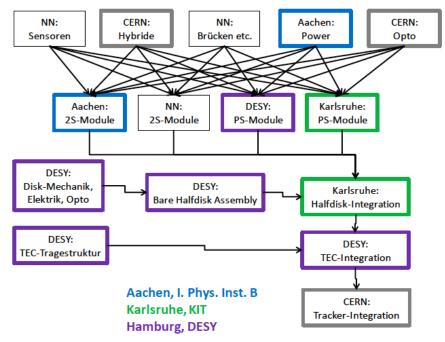
- finer granularity \rightarrow more channels
- higher band-width (analogue→digital links)
- improve resolution, at trigger level
- provide tracking information to L1 trigger
- more radiation hard detection elements
- ASIC technology scaling 250nm \rightarrow 130 nm \rightarrow 65 nm
- improved powering and cooling
- reduced material budget

Phase II Upgrade Plans of Experiments

	ATLAS	CMS	LHCb
Pixel Vertex Det.	New BN, DO, GÖ, HD, MPI, SI, W	New	New (Velo)
Tracker	New, all silicon B , DESY , F R	New, all silicon AC, DESY, KA	New Fiber Tracker Replace Upstream Tracker
			Replace RICH Electronics
Calorimeters	Replace Electronics DD, MPI	Replace End-Caps Replace Electronics	Replace Electronics
Muon Syst.	Replace Electronics FR, MZ, M, MPI, WÜ	Extend End-Caps Replace Electronics	Replace Electronics
Trigger	Upgrade HD, MZ DESY, HD	Upgrade	Trigger-less


German groups are active in many of the key areas!

Cost (ATLAS,CMS; roughly):


- 50% Pixel+Tracker
- 20% Calorimeters
- 10% Muon Syst.
- 10% Trigger/DAQ
- 10% Common Fund

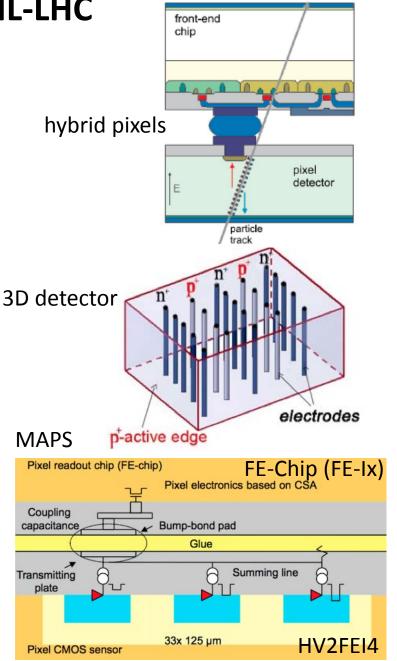
Upgrades are a joint effort of Universities, DESY, KIT and MPI

An example: Tracker End-Cap Construction

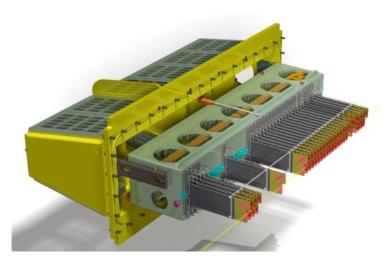
CMS

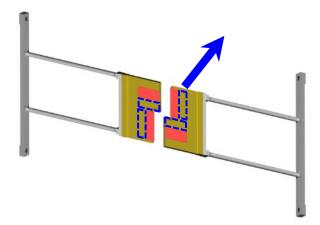
ATLAS + CMS Pixel Detectors at HL-LHC

extreme environment

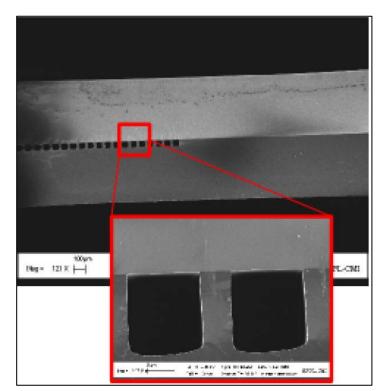

- particle rates up to 1-2 GHz/cm²
- fluence up to $2x10^{16} n_{eq}/cm^2$
- Ionizing dose up to 10 MGy
- → hybrid pixels (sensor layer + read-out layer)
- \rightarrow smaller pixels (e.g. 30µm x 100µm)

• sensor materials under study

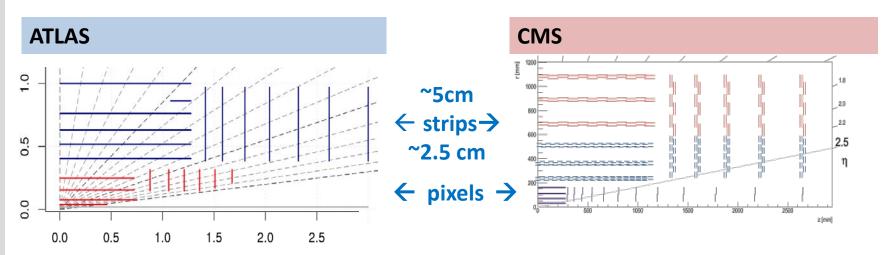

- thin planar silicon (100-200 μm)
- 3D detectors (part of ATLAS IBL)
- diamond
- depleted MAPS (CMOS sensor with ~20µm depletion depth + pre-amplifier → S/N~100)


• interconnection technologies

- bump-bonding (as today)
- 3D integration
- glue bonding?
- front-end chip: new R&D collaboration (RD53)
 - joint development of a pixel chip for phase II in 65nm technology for ATLAS and CMS

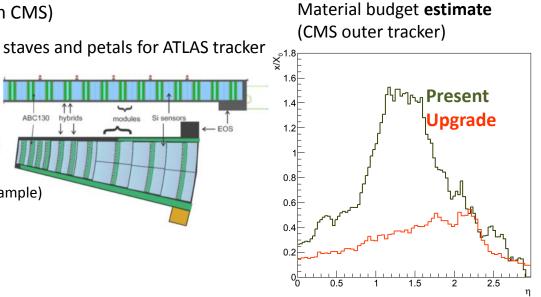


LHCb new VELO



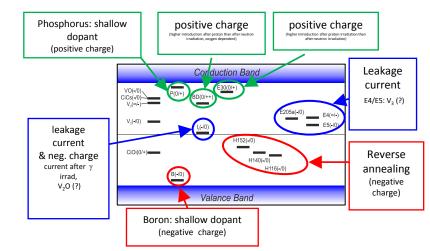
- strips \rightarrow pixels
- 8.2 mm → 5.1 mm distance of active elements to LHC beam
- thinning of RF foil between sensors and primary LHC vacuum 300µm → 150µm
- VeloPix ASIC (TimePix variant)
- micro-channel CO₂ cooling

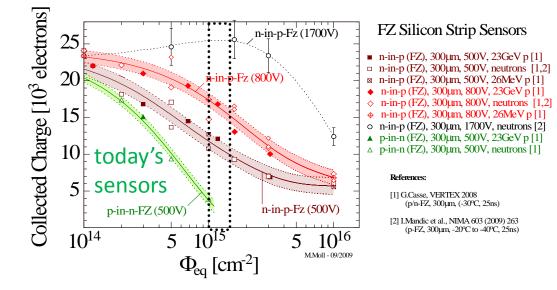
New ATLAS + CMS Trackers



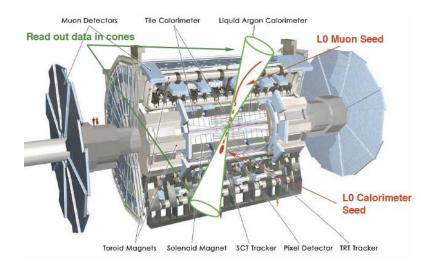
ABC130

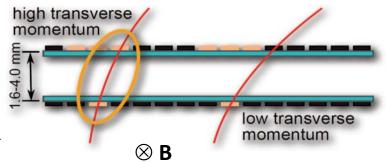
(b)


- all silicon outer trackers ٠
- acceptance $|\eta| < 2.5$ ($|\eta| < 4$ under study in CMS)
- 5.5 / 6 barrel layers + 7 / 5 disks
- 2 sensors per module with
 - 40 mrad stereo angle (ATLAS)
 - pt logic (CMS)
- 200 m² of silicon (each)
- front-end power: $33kW \rightarrow 58kW$ (CMS as example)
- much reduced material budget estimates
 - CO₂ cooling
 - **DC-DC** powering
 - lighter structures
 - relocation of services


HGF-Alliance Project of ATLAS and CMS groups:"Enabling Technologies for Silicon Tracking detectors at HL-LHC" (PETTL) 9

Silicon Strip Sensors


- up to around **1 x 10¹⁵** n_{eq}/cm² for ATLAS+CMS outer tracker
- detailed understanding of bulk defects in past years
- sensors used today would not deliver signal at the end of phase II
- design choices:
 - p-type substrates (today: n-type)
 - 200 ... 320 μm thickness
 - operation at up to 500...600V



Level 1 Track Trigger

- Benefits:
 - validate calorimeter or muon trigger objects (e.g. discriminate electrons from $\pi^0 \rightarrow \gamma\gamma$)
 - improve muon trigger pt measurement
 - check isolation of e, γ , μ or τ candidates
 - association to primary vertex

- ATLAS:
 - to be installed before Phase-II: FTK Fast TracK Trigger: at L2, 25μs
 - 'pull architecture'
 - L0 trigger (Calo/Muon) reduces rate within ~6 μ s to \gtrsim 500 kHz and defines 'regions of interest' (RoIs)
 - L1 track trigger extracts tracking info inside RoIs from detector FEs
- CMS:
 - '**push** architecture' for outer tracker
 - track segment selection at front-ends based on pt measurement (at 40 MHz)
 - all tracks with p_T > 2 GeV
 - explore 'pull architecture' for pixel \rightarrow b tags at L1

Power

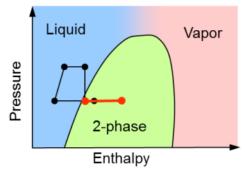
- higher channel density
- more functionality
- higher speed
- smaller chip technologies

DC-DC conversion:

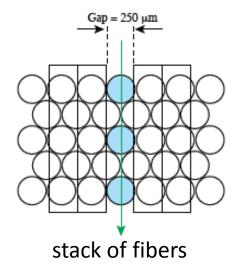
supply power at high voltage (~10V)

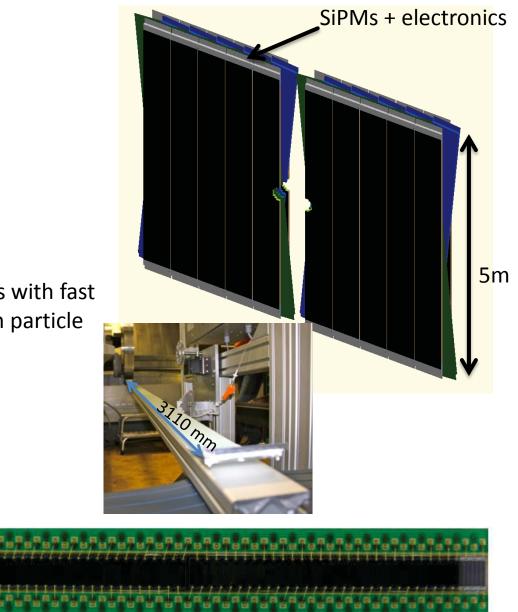
\rightarrow no tracking at HL-LHC with today's powering scheme

ightarrow new schemes also help to reduce material budget


serial powering:

use same current in a chain of modules


Cooling

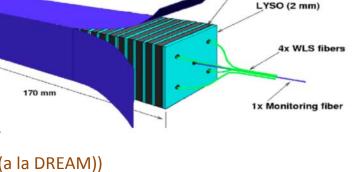

- evaporative CO₂ cooling for all new pixel and tracking detectors
- pioneered by LHCb Velo
- 15...100 bar
- 200...300 J/g instead of ~2 J/g in a mono-phase cooling system
- ightarrow much thinner (~2 mm dia.) and longer pipes possible
- \rightarrow large material reduction

Fiber Tracker for LHCb

- scintillating fibers
 + silicon photo-multipliers (SiPMs)
- 2.5 m long fiber modules
- SiPMs and electronics at periphery
- new technology to equip large areas with fast and precise tracking detectors when particle densities are not too high

128x250µm SiPM channels \rightarrow 50 µm resolution

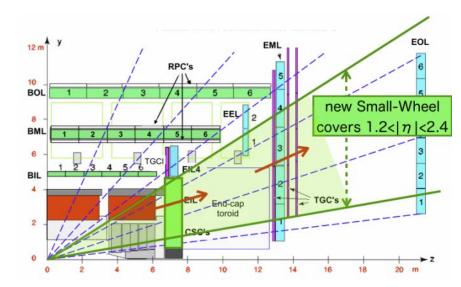
Calorimetry

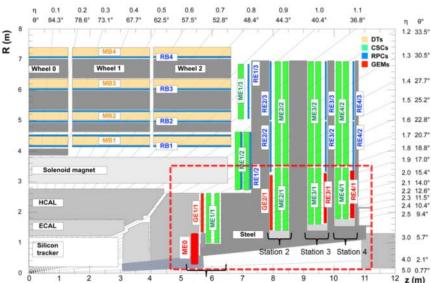

ATLAS

CMS

- replace LAr + TileCal FE+BE electronics: 40 MHz digitization, inputs to L0/L1
 - replace HEC cold preamps if required
- replace forward calorimeter if required
- full replacement of ECAL and HCAL end-caps
 - radiation induced loss of transparency
 - baseline: tower based sampling calorimeters
 e.g. Lead-LYSO shashlik ECAL
 - + HCAL with more read-out fibers
 - alternative option under study: integrated calorimeter
 - dual read-out calorimeter (scintillation + Cerenkov light (a la DREAM))
 - high granularity particle flow calorimeter (a la CALICE)
- extension of coverage from $|\eta| < 3$ to $|\eta| < 4$ is under consideration (VBF tagging)
- replace ECAL barrel electronics (crystal level granularity, 10µs latency, improved noise rejection)

19 mm


• replace Hadron Forward calorimeter if required

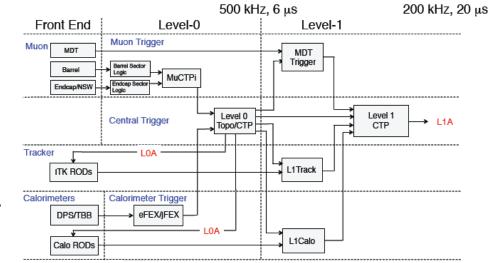


Pb (4 mm)

Muon Systems

- detector chambers will work at HL-LHC
- upgrade FE electronics
 - accommodate L0/L1 trigger scheme
- improve L1 pt resolution
 - using MDT information seeded by RPC/TGC ROI

- detector chambers will work at HL-LHC
 - completion with higher resolution muon stations at 1.6 < |η|<2.4 under study
 - GEMs and Glass-RPC
 - investigating coverage beyond |η|<2.4
 - GEM tagging station (ME0) coupled with extended pixel tracking
 - replace electronics of DT 'minicrates' for radiation tolerance and higher trigger rates


ATLAS

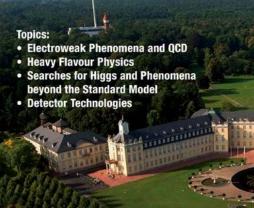
Trigger

ATLAS

CMS

- already before phase II:
 - L1 Topological Trigger
 - High precision calorimeter L1 trigger
 - Fast tracking at L2
- split L1 into
 - L0: muon + calorimeters
 - up to 500kHz, ~6µs latency
 - L1: muon + calorimeters + track trigger
 - up to 200kHz, ~6+14µs latency
- HLT accept up to 5-10 kHz

- increasing latency from 3.2 μs to 10μs will allow integrating tracking into all trigger objects at L1
 - requires replacement of ECAL barrel electronics (+ pixel, tracker, ECAl end-cap rebuilt anyway)
 - increase L1 accept rate from 100 kHz up to 1 MHz
 - L1 tracking trigger
 - new (finer segmented) L1 calorimeter, muon, global triggers
 - HLT output rate of 10 kHz
 - maintain present HLT rejection factor

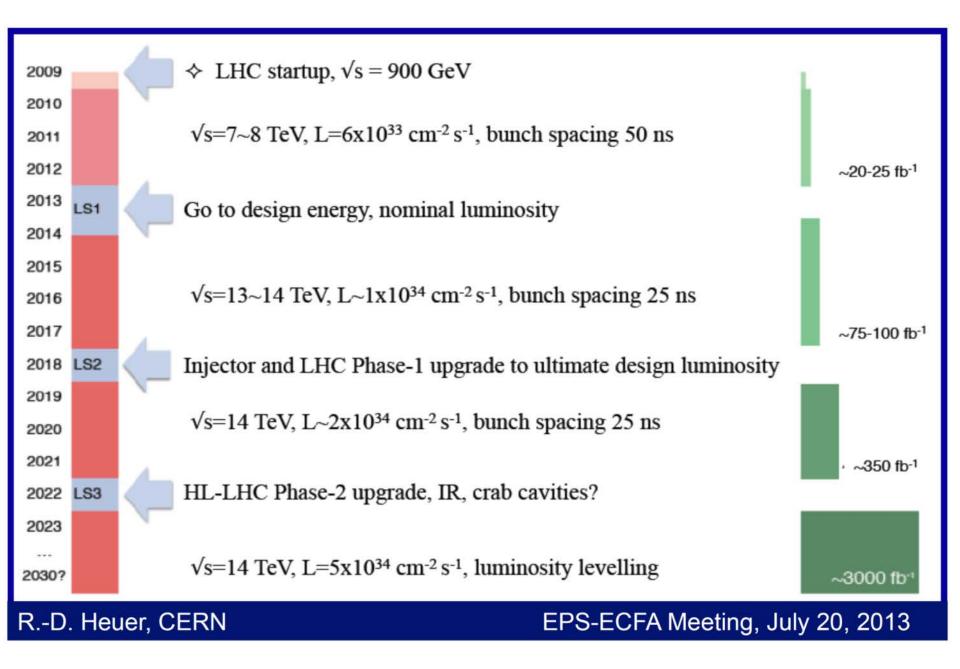

Helmholtz Alliance PHYSICS AT THE TERASCALE

PHYSICS AT THE TERA SCALE

7th Annual Workshop

Session on LHC Phase II Upgrade Plans in Germany at Alliance Workshop

2-4 December 2013 Karlsruhe



Tuesday 03 December 2013

14:00 - 18:00		Detector Project: LHC Phase II Upgrade Plans in Germany Convener: Lutz Feld (RWTH Aachen)		
	14:00	Introduction 15'		
	14.00	Speaker: Lutz Feld (RWTH Aachen)		
	14:20	ATLAS Pixel System 15'		
		Speaker: Fabian Hügging (Universität Bonn)		
	14:40	CMS Pixel System 15'		
		Speakers: Erika Garutti (University of Hamburg) , Erika Garutti (DESY)		
	15:00	ATLAS Tracking System 15'		
		Speaker: Ulrich Parzefall (Uni Freiburg)		
	15:20	CMS Tracking System 15'		
		Speaker: Alexander Dierlamm (Karlsruher Institut für Technologie)		
	15:40	Coffee Break 30'		
	16:10	ATLAS Calorimetry 15'		
		Speaker: Olga Novgorodova (DESY)		
	16:30	ATLAS Muon System 15'		
		Speaker: Oliver Kortner (Max-Planck-Institut für Physik)		
	16:50	CMS Muon System 15'		
		Speaker: kerstin Hoepfner (RWTH Aachen)		
	17:30	LHCb 25' 17		

Summary

- phase II detector upgrades are essential to take full benefit of LHC luminosity upgrade
- challenging program, including lots of new technologies
- German groups are active in many of the key areas
- if you are looking for a great detector
 project: now is the time to join!

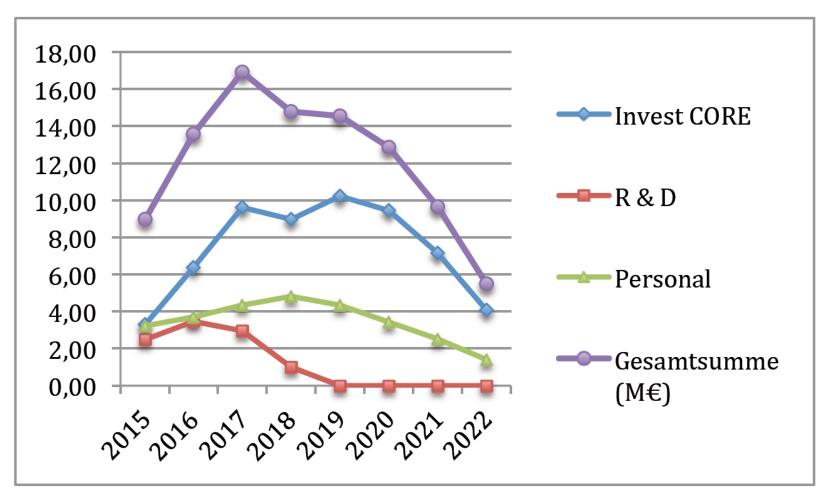
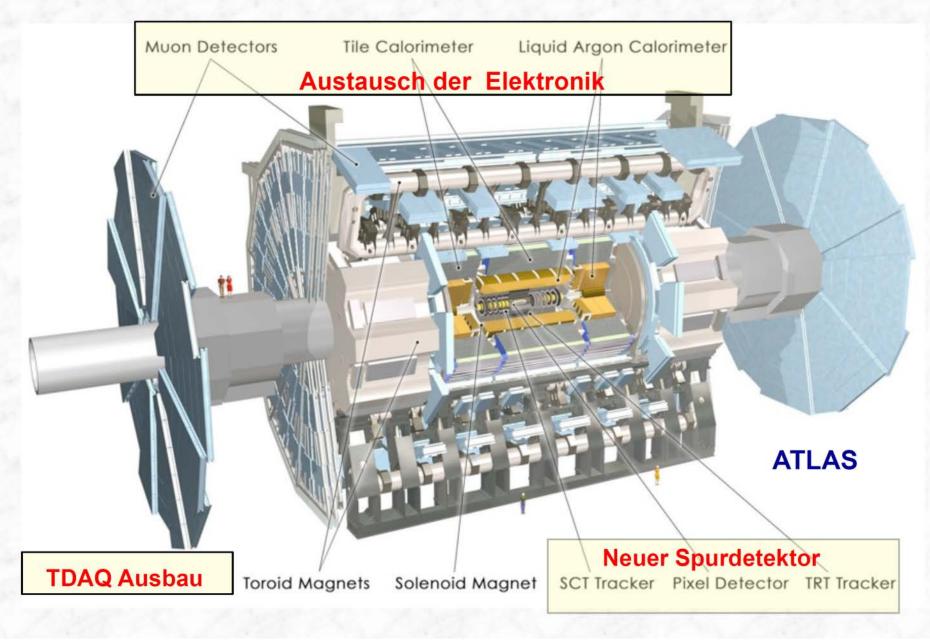



Abbildung 1: Zeitliches Profil des deutschen Anteils von 97 M€ an den Detektorkosten der vier LHC-Experimente.

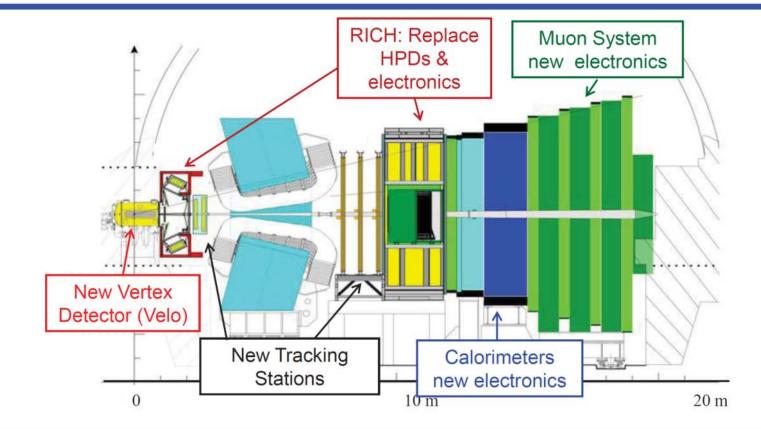
ATLAS Detektor und Überblick über den Ausbau

Muon system

GEM Glass RPCs
Extended η coverage
New DT minicrates

Phase 2 Upgrades

Tracker


- Higher granularity
- Less material
- Better p_T resolution
- Extended η coverage
- Track trigger at L1

Trigger/DAQ

New FE and RO
L1 up to 1 MHz
HLT up to 10 KHz
Tracking at L1

Replace Endcap Calorimeters

LHCb Upgrade Maßnahmen

- Upgrade ALLER Sub-Systeme auf 40 MHz Front-End (FE) Elektronik.
- Ersatz aller Systeme mit nicht-austauschbarer Elektronik: VELO, TT, RICH HPDs
- Neues Spursystem um erhöhter Multiplizität Rechnung zu tragen
- Neue Computing-Farm und neues Auslesenetzwerk