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Observations

® For explaining micro-Gauss Galactic magnetic
fields, primordial seeds larger than 10-2° Gauss
required

® Recent claims of a lower bound on magnetic field
in the intergalactic space of /0> Gauss  [Neronov,Vovk 2010]

B |ndication of inflationary magnetogenesis

® Upper bound on primordial magnetic fields of
order nano-Gauss from CMB



A little bit of history...
L= VG "

in FRWV space is conformal inv. = doesn’t feel

expansion
B Flectromagnetic fields are not amplified by inflation

B Breaking of conformal invariance needed

® Consider coupling of EM fields to other fields, which
may couple to gravity in a non-conformal invariant
way

B Production of magnetic fields? [Tuner,Widrow 1988]



Different models

® Dynamical gauge coupling
1
[ = —11/—9)\(¢)FMVFW/ [Ratra 1992]

® Coupling to gravity
C 1

L= =g |~ FuF" - %R“FWFW

same as above, when @ is the inflaton

® Axial coupling
1

v 1 - V_
L==g |~ 7FuwF" = S N@)Fu F"

strong constraints from NG and backreaction




® Mass term

. ]
L =+/—g _ZFWFW + mQAMA“

* Negative mass-squared needed for generating
enough magnetic fields

* Generating neg. mass-squared from Higgs mech. =

one needs ghost scalar field with neg. kinetic energy

[Dvali et.al. 2007, Himmetoglu, Contaldi, Peloso 2009]



Magnetogenesis in Ratra-type
models

® In Coulomb gauge we have ( 49 =0, 84" =0)

1 1

Sem =~ / day/ =g \(8) Fu ™ = / Bz drA(0) (Af _ 2—(112(@,4]- _ 3in)2)

® With the magnetic field given by

1
B;(1,x) = aeijkajAk (7, %)

® Defining the magnetic power spectrum
(Bi(1,k)B'(1,X)) = (2r)*6®®) (k + K') Pp(k)

it can be computed from

]{72

Pp(k) = 2¥|Ak(7)|2



Define pump field 5%(n) = A(¢(n))
and a canonically normalized vector field v; = S(7)A;

Such that the quadratic action takes the simple form

1 3 S//
Sy = 2/d7d [v — (0v;)? +§v]

The EOM for the mode function vy = S(7)Ax is

S”
'UZ“‘ (k‘z—?) v = 0

With A(¢(7)) = Mr(7/m)~%" the solution normalized to Bunch-
Davis vacuum is

m™ .
() = YT/ 0) ()

which leads to

1 mH?

PB(k) = )\15 k3

2

2n
T 5
(n) (—kT) Hgn(—m)ﬂﬁﬁn(—m)



B For n>-//2 the spectral index of the magnetic
power spectrum is

ng = (4 — 2n)

® For a scale invariant spectrum, n=2, back-reaction
remains small

® |n this case, with H=/0"* GeV, a magnetic field

strength of order nano-Gauss an be achieved on
Mpc scales



Strong coupling problem

® Adding the EM coupling to the SM fermions

£ = V=G| MO FWF™ — (0, + e,

® The physical electric coupling is

Ephys — 6/ V )‘(¢)

® Since VA xa” then for n >0 the electric coupling decreases
by a lot during inflation, and must have been very large at
the beginning

-QFT out Of ContI"O| |n|t|a.”)’ [Demozzi, Mukhanov, Rubinstein 2009]

[Bonvin, Caprini, Durrer 201 |, Caldwell, Motta 2012, Bartolo,
Matarrese, Peloso, Ricciardone 2012, and more...]

® Solutions??? Speculations

=) More work required! [Ferreira, Jain, MSS 2013]
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The Sawtooth Model

® Relax assumption of monotonic coupling
function

B Patch together piecewise sections with «|
steeper slope for more enhancement

Coupling Function

® Each section is shorter to avoid back-
reaction

=) One might be worried that adding more
steep sections, the energy density of the
steep sections will add up and prohibit this!

® This turns out not to be true!



The Sawtooth Model

[Ferreira, Jain, MSS 201 3]
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The Sawtooth Model

® By using the appropriate matching conditions, the
dominant solution before the transition matches
to the decaying solution after the transition.

B This leads to a very large k-dependent loss in the
magnetic field spectrum in all the concave
transitions and in the electric field in the opposite
cases

B The loss in the electric field spectrum avoids the
back reaction problem

B The loss in the magnetic spectrum however also
implies a too small value of the magnetic field
strength at the end of inflation [Ferreira, Jain, MSS 2013]



Low scale inflationary
magnetogenesis

*Even in the monotonic case without strong coupling
and back-reaction, the magnetic fields are very strong at
the end of inflation

de J (n) H4 (_kn)4+2n

(a4

dlogk ~ 2m2 1G ~ 10 GeV?

*|t is the subsequent post-inflationary evolution where
B* = | /a* which dilutes the magnetic field

*Minimize post-inflationary dilution by assuming TeV
scale inflation

= femto-Gauss magnetic fields on Mpc scale today
[Ferreira, Jain, MSS 201 3]
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Gauge field production during
inflation

® The issues with inflationary magnetogenesis
might prompt us to ask more generally how we

can probe more precisely the effect of gauge
fields produced during inflation

® The gauge field act as an isocurvature field and
induces a curvature perturbation CgB? since

- H
<: 5Pnad
pt+D

with 5
0Pqq4 = 0pB — 55:03



® Scale invariance then implies

0 { Bioday \° /0.01\? / N, ?
oo ~ 10 10(15—%) (—) ( szNoIB) Wo = Nowm)

® So P, <P implies

Btoda,y ri 10_9 G



Non-Gaussian features of gauge field
production during inflation

® Non-Gaussian contributions of the form

((BCBCB)  ((CBCB) (CCCB)

turns out to provide even stronger
constraints

® Since CgxB? they are derived from more

fundamental correlations of the form

(B°B*B%)  ((CBY) (BB



Non-Gaussian features of gauge field
production during inflation

® Non-Gaussian contributions of the form
Ar-ignored

(CoCoCa)( (CCuls)  (CCCH)

turns out to proviae-even stronge
constraints

[Nurmi & MSS, to appear]

® Since CgxB? they are derived from more

fundamental correlations of the form

(B*B*B*)  (((B°) (¢B*B?)



Non-Gaussianity from cross-
correlations

® Consider

1
L= _Z\/jg)‘(gb)F,uuF'uV

w. direct coupling of magnetic field with the
inflaton

= NG correlation of magnetic field with
inflaton field

(C(ky)B(ks) - B(ks)) (= %&b

[Kamionkowski, Caldwell, Motta (2012), Jain, MSS (2012),
Biagetti, Kehagias, Morgante, Perrier, Riotto (201 3)]



(Ordinary) Non-Gaussianity

® TJo leading order, the perturbations are encoded in the two-
point function

(i) = (2m)%0(k + K') P (k)

® A non vanishing three point function

<<k1 Ck'Q Ckg >

is a signal of non-Gaussianity

e Introduce dimensionless fy; :

SNL ~ (CryCroCrs) [ Pe (k1) Pe(k2) + perm.

as a measure of non-Gaussinity

® Similarly

TNL ™ <Ck1 CkQCkBCk4> /PC(kl)PC(kQ)PC(klzl) + perm.



Non-Gaussianity: Single field slow-roll

® Perturbations conserved on super-horizon
scales: NG is computed at hoizon crossing

® Bispectrum from 3-point interaction A

JNL ~ € [Maldacena '02, ]

® Trispectrum from connected 4-point ><
interaction and graviton exchange >/\/\<

TN ~ €

[Seery, Lidsey, Sloth 06,
Seery, Sloth, Vernizzi ’08]



Magnetic non-linearity
parameter: b

® |et’s parametrize (((k1)B(k2) - B(k3)) in a similar
way

B Introduce new magnetic non-linearity
parameter: bni

® Define the cross-correlation bispectrum
(¢(k1)B(ks) - B(ks)) = (27)36®) (ky + ko + k3)Bepp(k1, ko, k)

® \We then define
B¢pp(ki, ko, k3) = by Pe(k1)Pp(k2) (CORICK)) = (2m)*5 (ke + ) P (k)

(B(k) - B(K)) = (27)36® (k + K') Pg(k)



Local bng

® |n the case where bn.is momentum
independent, it takes the local form:

B — B(G) 4 blocalC(G)B(G)
2

® Compare with local fni, given by

¢ =@ 4 floca,l (C(G)>2



Iwo interesting shapes

|. The squeezed limit k; < ko, ks =k
® We obtain a new magnetic consistency relation
(C(k1)B(k2) - B(ks)) = (np — 4)(2m)°6") (kg + ko + ks) P (k1) Pp (k)
with bni°? = (ng - 4)
® Compare with Maldacena consistency relation

(C(k1)C(k2)C(ks)) = —(ns — 1)(2m)%6®) (kq + ko + k) Pe (k1) Pe (k)

with o< = - (ns- I)



Iwo interesting shapes

2. The flattened shape k,/2 = ky = k3

® This is the shape where bni turns out to be
maximized with

by | ~ O(10°)



The magnetic
consistency relation

® |n terms of the vector field, we have
! / 0427/ =g \() Fyu FH”

Sem — A
— §/d3£€ dT/\(gb) (A;z — %(@AJ — (93142)2)

1

® where the magnetic field power spectrum
IS

k2

Pp(k) = — (A(r,k) - A(r, k)



e Consider (¢(7,k1)A; (71, ko)A (71, k3)) in the squeezed
limit k1 < ko, ks =k

® The effect of the long wavelength mode is to shift the
background of the short wavelength modes

lim (((77,k1)A:(71,k2)A;(71,k3)
k:1—>0

= (((11,k1) (Ai(71, ko) Aj (71, k3) 5 )

® Since the vector field only feels the background through

the coupling A, all the effect of the long wavelength
mode is captured by

dAg d\g
AB = Ao dlna(ﬂnCH_ = Ao dlna

B+ ..



® Define pump field S? = \q
® and linear Gaussian canonical vector field
V; — S(’T)AEG)

® Such that the quadratic action takes the
simple form

{ i i
S, = 5 /d'rd3x vt — (0;v;)% v;




® Since all the effect of the long wavelength mode is

IN
d)\ d)\
dlna

CB
B One finds
]

(s, x0) 43 (7, x0)) 5 = ( 5 32y x) )

1 dA
)\10 <Uz(’r X2)UJ(T X3)> _)\(2) dlna,CB <vi(7—’ XZ)vj(T’ XB»

o Using

d\/dlna = M\ H

® and
k;ligo (C(7r,k1)Ai(T1,k2) A (71, k3)

— <C(7‘I, ki) (Ai(7r, ko) Aj(71, k3>B>

B One finds iy (C(17, k1) A (7, k2) A (7, k3))

k1—>0
1\

=3 (C(rr, ka)C (71, —ka))g (Ai(7r, k) A; (71, k)

Y



Consistency relation

® Expressing it in terms of the magnetic fields

m) Magnetic consistency relation

(¢(11,k1)B(11,k2) - B(71,k3))

1 A
— ‘EX(%)S‘S(B)(M + ko +k3)P¢ (k1) Pp(k2)

e With X@(1)) = Ar(r/mr) 2"
B One has b= (ns- 4)



The full in-in QFT calculation

® Perturbing the metric in the ADM formalism
ds®* = —N?dt* + h;;(dz* + N'dt)(dz? + Ndt)

® with the metric ansatz h;; = a%¢* [¢"],;

® and solving for the lapse and shift
N:1+%é

Ni = 82 (—%C -+ a2€ 8_24-)

® |t is easy to see that the interaction Hamiltonian

1
Hean = —5 /d3x a’ T g
® becomes
HCAA = —l/d3$a3 iéTOO — 8z _lg + a2€8—2<" TO’i L QQCT’ii
2 H H
[Caldwell & Motta, 2012]



® However this form of the Hamiltonian is a total
derivative to leading order

® After a few partial integration, the leading order
term in the slow roll expansion cancels out, and
one finds

Bl e (ad — L4 —0.42) — o (3L
HCAA— 2/d$(a)\H< (AzAz 2(12(8214] 83142)) 8t (CL HgT

® This now agrees with what one would obtain in
the uniform curvature gauge by expanding the
coupling as a function of the inflaton fluctuations
dX d¢

A= o€ = —Og H b



® Using the in-in formalism for evaluating the
expectation value at some time T

(9] O(r1) |9) = (0] T (75 4rH1) O(ry)T (&7 /75 471 o)

® One obtains

1A
(¢, k) B(1, ko) - B(rr, ks)) = 773(2m)°8 (ka + dep + ko) |G () P4 (o)l 14y ()
ko - k3)? N N
X [(kz ks + (ke - 23) ) koksZ 1) + 2(ky - k3)?Z(?)
k2k3
[Jain, MSS 2012]

F1) _ 1

2 (koks)¥/2k]

x [k} — 2k (k2 + ks) — 2k1 (k3 + koks + k3) — (ko + k3) (k3 + koks + k3)]

F(2) _ 1

¢ (koks)3/2k? ki = k1 + ko + ks

x [(k1 + k2)?(—3k{ — 3k3ko — k3) + (k1 + ko) (—9k7 — 6kika — 2Kk3)k3
+(—9k3 — 6k2ky — 2k1 k3 — 2k3) k2
—2(2k3 + kika + k3 )k5 — 2(k1 + ko)k3 — k3 + 3k7k; (v + In(—kety))]



The flattened shape

® The integral contains a growing log

B The effect maximal, when the coefficient of the log
is maximal

B The correlation is maximal in flattened shape
k1 = 2ko = 2k3
® |n this case

(C(71,k1)B(77, ko) - B(71,k3)) ~ —96 In(—ki77) P (k1) PR(K2)

® For the largest scales exiting the horizon about 60
e-folds before the end of inflation, so In(—k77) ~ 60

m) ’b{jf ~ 5760 |

[Jain, MSS 2012]



The squeezed limit

In the squeezed limit, k1 < k2,k3 =k , the integrals
simplify significantly, and we have

~

5 TI ~(1
I = —W/ drdp_1/2(—k71)Yn_1/2(—kT1) QR Ifr(hzl

n

For integer values of n, one can show that

W = —(n —1/2)/k?

n

which gives

(C(11,k1)B(71, ko) - B(77,k3)) = —%i—j(%)%(‘g)(kl + ko + k3) P (k1) Pp(k2)

which gives a local type non-linearity parameter
1 A

blocal N 3

consistent with the magnetic consistency relation ain, Mss 2012]



Induced non-Gaussianity

® The large bniin the flattened shape implies

that ((¢s(s) becomes large in this shape
[Nurmi & MSS, to appear]

B This provides much stronger bounds than
the previous known result  ((8(B(B)

[Barnaby, Namba & Peloso, 2012; Lyth & Karciauskas, 201 3; Fujita & Yokoyama,201 3]



Conclusions

If the magnetic consistency relation is violated it will
rule out an important class of models for
magnetogenesis

The consistency relation is an important theoretical
tool for consistency check of calculations

The new bn. parameter can be very large in the
flattened limit and has interesting phenomenological
implications

We have found new strong bounds on the amount
of inflation in the AF? models
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