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Observations

• For explaining micro-Gauss Galactic magnetic 
fields, primordial seeds larger than 10-20 Gauss 
required	



• Recent claims of a lower bound on magnetic field 
in the intergalactic space of 10-15 Gauss	



➡ Indication of inflationary magnetogenesis	



• Upper bound on primordial magnetic fields of 
order nano-Gauss from CMB

[Neronov, Vovk 2010]



A little bit of history...

!

in FRW space is conformal inv. ⇒ doesn’t feel 

expansion	



➡Electromagnetic fields are not amplified by inflation	



➡Breaking of conformal invariance needed	



• Consider coupling of EM fields to other fields, which 
may couple to gravity in a non-conformal invariant 
way	



➡Production of magnetic fields?       [Tuner, Widrow 1988]
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Different models
• Dynamical gauge coupling	



!

• Coupling to gravity 	



!

same as above, when Φ is the inflaton	



• Axial coupling	



!

strong constraints from NG and backreaction
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[Ratra 1992]



• Mass term	



!

• Negative mass-squared needed for generating 
enough magnetic fields	



• Generating neg. mass-squared from Higgs mech. ⇒ 

one needs ghost scalar field with neg. kinetic energy

[Dvali et. al.  2007, Himmetoglu, Contaldi, Peloso 2009]
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Magnetogenesis in Ratra-type 
models!

• In Coulomb gauge we have (          ,            )	



!

• With the magnetic field given by 	



!

• Defining the magnetic power spectrum	



!

it can be computed from	



!



• Define pump field	



• and a canonically normalized vector field	



• Such that the quadratic action takes the simple form  	



!

• The EOM for the mode function                    is	



!

• With                                 the solution normalized to Bunch-
Davis vacuum is	



!

• which leads to	





➡ For n> -1/2 the spectral index of the magnetic 
power spectrum is 	



!

• For a scale invariant spectrum, n=2, back-reaction 
remains small	



•  In this case, with H≃1014 GeV,  a magnetic field 
strength of order nano-Gauss an be achieved on 
Mpc scales 

nB = (4� 2n)



Strong coupling problem

• Adding the EM coupling to the SM fermions	



!

• The physical electric coupling is	



!

• Since            then for          the electric coupling decreases 
by a lot during inflation, and must have been very large at 
the beginning	



➡QFT out of control initially           [Demozzi, Mukhanov, Rubinstein 2009]	



• Solutions???  Speculations	



➡ More work required!             [Ferreira, Jain, MSS 2013]          
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 [Bonvin, Caprini, Durrer 2011, Caldwell, Motta 2012, Bartolo, 
Matarrese, Peloso, Ricciardone 2012, and more...]
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The Sawtooth Model
• Relax assumption of monotonic coupling 

function
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The Sawtooth Model
• Relax assumption of monotonic coupling 

function

➡Patch together piecewise sections with 
steeper slope for more enhancement
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The Sawtooth Model
• Relax assumption of monotonic coupling 

function

➡Patch together piecewise sections with 
steeper slope for more enhancement

• Each section is shorter to avoid back-
reaction 
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The Sawtooth Model
• Relax assumption of monotonic coupling 

function

➡Patch together piecewise sections with 
steeper slope for more enhancement

• Each section is shorter to avoid back-
reaction 

➡One might be worried that adding more 
steep sections, the energy density of the 
steep sections will add up and prohibit this!
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The Sawtooth Model
• Relax assumption of monotonic coupling 

function

➡Patch together piecewise sections with 
steeper slope for more enhancement

• Each section is shorter to avoid back-
reaction 

➡One might be worried that adding more 
steep sections, the energy density of the 
steep sections will add up and prohibit this!

• This turns out not to be true!
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The Sawtooth Model

[Ferreira, Jain, MSS 2013]



• By using the appropriate matching conditions, the 
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• By using the appropriate matching conditions, the 
dominant solution before the transition matches 
to the decaying solution after the transition. 

➡This leads to a very large k-dependent loss in the 
magnetic field spectrum in all the concave 
transitions and in the electric field in the opposite 
cases 

➡The loss in the electric field spectrum avoids the 
back reaction problem

➡The loss in the magnetic spectrum however also 
implies a too small value of the magnetic field 
strength at the end of inflation 

The Sawtooth Model

[Ferreira, Jain, MSS 2013]



Low scale inflationary 
magnetogenesis	



•Even in the monotonic case without strong coupling 
and back-reaction, the magnetic fields are very strong at 
the end of inflation	


!
!

•It is the subsequent post-inflationary evolution where 
B2∝1/a2 which dilutes the magnetic field	



!
•Minimize post-inflationary dilution by assuming TeV 
scale inflation	


!
➡ femto-Gauss magnetic fields on Mpc scale today

[Ferreira, Jain, MSS 2013]
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Gauge field production during 
inflation

• The issues with inflationary magnetogenesis 
might prompt us to ask more generally how we 
can probe more precisely the effect of gauge 
fields produced during inflation	



• The gauge field act as an isocurvature field and 
induces a curvature perturbation ζB∝B2  since 

with



• Scale invariance then implies	



!

!

• So                 implies 



Non-Gaussian features of gauge field 
production during inflation

•  Non-Gaussian contributions of the form	



!
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• Since ζB∝B2, they are derived from more 

fundamental correlations of the form



Non-Gaussian features of gauge field 
production during inflation

•  Non-Gaussian contributions of the form	



!

 	

 turns out to provide even stronger 	

 	

 	


	

 constraints	



• Since ζB∝B2, they are derived from more 

fundamental correlations of the form

So far ignored

[Nurmi & MSS, to appear]



• Consider	



!

w. direct coupling of magnetic field with the 
inflaton 	



➡NG correlation of magnetic field with 
inflaton field 

Non-Gaussianity from cross- 
correlations
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[Kamionkowski, Caldwell, Motta (2012),  Jain, MSS (2012), 	


Biagetti, Kehagias, Morgante, Perrier, Riotto (2013)]



• To leading order, the perturbations are encoded in the two-
point function	



!

• A non vanishing three point function	



!

   is a signal of non-Gaussianity	



• Introduce dimensionless fNL :	



!

   as a measure of non-Gaussinity	



• Similarly	



(Ordinary) Non-Gaussianity

h⇣k⇣k0i = (2⇡)3�(~k + ~k0)P⇣(k)

h⇣k1⇣k2⇣k3i

fNL ⇠ h⇣k1⇣k2⇣k3i /P⇣(k1)P⇣(k2) + perm.

⌧NL ⇠ h⇣k1⇣k2⇣k3⇣k4i /P⇣(k1)P⇣(k2)P⇣(k14) + perm.



• Perturbations conserved on super-horizon 
scales: NG is computed at hoizon crossing	



• Bispectrum from 3-point interaction 	



!

• Trispectrum from connected 4-point 
interaction and graviton exchange

Non-Gaussianity: Single field slow-roll

fNL � �
[Maldacena ’02, ]

(� � 0.2)

⇥NL � �
[Seery, Lidsey, Sloth ’06,	


 Seery, Sloth, Vernizzi ’08]



• Let’s parametrize                         in a similar 
way	



➡Introduce new magnetic non-linearity 
parameter: bNL 	



• Define the cross-correlation bispectrum	



!

• We then define 

Magnetic non-linearity 
parameter: bNL

h⇣(k1)B(k2) ·B(k3)i



Local bNL

• In the case where bNL is momentum 
independent, it takes the local form:	



!

• Compare with local fNL , given by

⇣ = ⇣(G) +
3
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Two interesting shapes 

1. The squeezed limit	



• We obtain a new magnetic consistency relation	



!

with bNL
local = (nB - 4)	



• Compare with Maldacena consistency relation	



!

with fNL
local = - (ns - 1)	



h⇣(k1)B(k2) ·B(k3)i = (nB � 4)(2⇡)3�(3)(k1 + k2 + k3)P⇣(k1)PB(k)

h⇣(k1)⇣(k2)⇣(k3)i = �(ns � 1)(2⇡)3�(3)(k1 + k2 + k3)P⇣(k1)P⇣(k)



Two interesting shapes 

2. The flattened shape	



• This is the shape where bNL turns out to be 
maximized with



The magnetic 
consistency relation

• In terms of the vector field, we have	



!

!

• where the magnetic field power spectrum 
is



• Consider                                      in the squeezed  
limit 	



• The effect of the long wavelength mode is to shift the 
background of the short wavelength modes	



!

• Since the vector field only feels the background through 
the coupling λ, all the effect of the long wavelength 
mode is captured by  



• Define pump field	



• and linear Gaussian canonical vector field	



!

• Such that the quadratic action takes the 
simple form  



• Since all the effect of the long wavelength mode is 
in	



➡One finds	



!

• Using	



• and	



!

➡One finds



• Expressing it in terms of the magnetic fields	



➡Magnetic consistency relation	



!

!

!

• With	



➡One has bNL= (nB - 4)	



!

Consistency relation



The full in-in QFT calculation
• Perturbing the metric in the ADM formalism	



!

• with the metric ansatz	



• and solving for the lapse and shift	



!

!

• It is easy to see that the interaction Hamiltonian	



!

• becomes

[Caldwell & Motta, 2012]



• However this form of the Hamiltonian is a total 
derivative to leading order	



• After a few partial integration, the leading order 
term in the slow roll expansion cancels out, and 
one finds	



!

• This now agrees with what one would obtain in 
the uniform curvature gauge by expanding the 
coupling as a function of the inflaton fluctuations 



• Using the in-in formalism for evaluating the 
expectation value at some time τI	



!

• One obtains

[Jain, MSS 2012]



• The integral contains a growing log	



➡The effect maximal, when the coefficient of the log 
is maximal	



➡The correlation is maximal in flattened shape	



!

• In this case	



!

• For the largest scales exiting the horizon about 60 
e-folds before the end of inflation, so	



➡                                               !

The flattened shape

[Jain, MSS 2012]



The squeezed limit
• In the squeezed limit,                   , the integrals 

simplify significantly, and we have	



!

• For integer values of n, one can show that	



!

• which gives	



!

• which gives a local type non-linearity parameter	



!

consistent with the magnetic consistency relation [Jain, MSS 2012]



Induced non-Gaussianity

• The large bNL in the flattened shape implies 
that            becomes large in this shape	



!

➡This provides much stronger bounds than 
the previous known result    

[Nurmi & MSS, to appear]

[Barnaby, Namba & Peloso, 2012; Lyth & Karciauskas, 2013; Fujita & Yokoyama,2013]



Conclusions
• If the magnetic consistency relation is violated it will 

rule out an important class of models for 
magnetogenesis	



• The consistency relation is an important theoretical 
tool for consistency check of calculations	



• The new bNL parameter can be very large in the 
flattened limit and has interesting phenomenological 
implications	



• We have found new strong bounds on the amount 
of inflation in the          models	



!
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