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Motivation

@ DIS: Structure functions : scale dependence is governed by anomalous
dimensions of twist-2 operators (known at three loop order, Larin, Vermaseren,
Moch, Vogt, et al)

@ DVCS: Generalized Parton Distributions: scale dependence «— full anomalous
dimension matrix (nonforward kernel)

@ At one loop level: anomalous dimensions+conformal symmetry— full anomalous

dimension matrix.
Conformal symmetry is extremely useful at one loop.

"The use of conformal symmetry in QCD", Braun, Korchemsky, Miiller, 2003

@ In any realistic d = 4 QFT the conformal symmetry is broken, 5(g) # 0.
Is any use of conformal symmetry beyond one loop ?

@ D. Miiller, Constraints for anomalous dimensions of local light cone operators in
¢? in six-dimensions theory, Z. Phys. C 49 (1991) 293.

( Conformal Ward ldentities, Conformal anomaly, Conformal scheme, etc )

Belitsky, Miiller, (2000) two loop kernels in QCD.



Motivation

® What does conformal symmetry tell us about evolution equations in
conformal field theories?




CFT model

O(n) symmetric ¢* model in d = 4 — 2¢

_ 1 gM25
S(¢) —/ddx |:2(890)2 + 24(902)2] )

B(a) = — 2ea + -

a?(n+8) a®(3n+14) 92
3 3 +0(a?), {a :|

Critical point o, 8(ax) = 0 => Scale and Conformal invariance

(describes phase transition in Ising model)

[ Large Ny QCD has a critical point in d =4 — 2¢, B(ax) =0.]



Renormalization

We consider twist-2 symmetric and traceless operators
Opp..uy(z) = chsam oo Oppp(0)Opyyy - - - Ouyp(0) — traces

The standard trick is to contract all indices with null vector n, n2 = 0.

ON(:L’) = nHl, TLHNO;J,l “N(ZL’ Z Crm Omi

k+m N

Oy is a linear combination of the basis twist—2 operators

Ot = — (nD) " 9(0) (D) (0)



Renormalization

Renormalization:  MS scheme

o0
Ot = [Oi] = ZF (0, ) Oprie Z =143

[Opi] are finite operators (i.e. their correlation functions with basic field are finite)

<[07nk](z)(p(x1) ce W(xk)> =Nt / DﬂoeisR(gp)[Omk](x)w(ml) s @(mk)
We keep e—finite (do not send € — 0).

The correlators depend explicitly on ¢, but in the MS scheme Z—factors contain only
pole terms in €

(In MOM scheme Z factors contain both singular and regular terms in e)



Renormalization

Renormalization group equation:

([800ns + B(@)0a] 87 8 + 471 (@) (O] =0

~ is an anomalous dimension matrix (in the MS-like schemes)

az
v(a) = 7MWZ*1 =ay® 4+ a2y® 4

Important: — | (%) do not depend on €!!

Critical dimensions:

Y(ax) = a*,y(w + 042’7(2) +..., [y(a) = ary(l) + a2,7(2) +..]

s = 6¢/(n +8) + O(?) B(ax) =0
MS scheme: if one knows v(ax) then he knows v(a), v(ax) <= v(a)

At o = ax the theory enjoys an exact conformal symmetry. One can expect that this
symmetry reveals itself in properties of ().



Local vs Nonlocal (light-ray) operators

Nonlocal operator is a generating function for local ones

(021, 2)] = lp(a + an)p(e + 2n)] = Y 2" 2[O(@)]

mk

It can be represented in the following form
[O(z; 21, 22)] = [Z O)(m; 21, 22) = / dudv Z(u, v) O(z; 215, 231 )

2y =21(1 —u) + z2u and Z(u,v) =1+ Z;’Zl AICRIROVER

The RG equation takes the form
([MaM +B(e)da] + H(a)) [O(z; 21, 22)] = 0
Here H(u) is the evolution kernel (Hamiltonian)

H(a) = oHWY 4+ o2H® 4

and

[H(k)f](zl, 2) = / dudv B (u, v) f(21, 231) -



One-loop examples

Notations: & =1 — u, 7 = uwv/uv.

4] <p4 theory

Lsa-m G=1/2)

uv

1
[Hgf;l‘l)f](zl’ ) = / du f(2(s, 212), [A(w, v)
0

@ ° theory (d = 6 — 2¢)

1 a
[H;lgf](zl,z?):/ du/ dvf(ly,21),  [h(wo)=1] (j=1)
0 0

@ QCD, nonsinglet operators: Hézlc)‘n —H- H_3 (=1)

1 _
T u u u
[H fl(z1, 22) = / du— [2f(21, 22) = f(z12, 2) — f(z1,221)],  [R(u, v) =6 (7)]
0
The Hamiltonians commute with the generators of the SL(2, R) group: [H, S+ 0] =0
S_ =0 =y, So=2m0s +20m +2j, Sy =20s +250. +2i(21 + 2)

[S4,S5-] =250, [So, Sx] = +5¢

S_ —translations, Sp—dilatations, S —inversions, j—conformal spin



One-loop examples

Finite symmetry transformations:

f(zl,ZQ)—>f/(21,z2)= 1 <a21+b azg+b>

(cz1 + d)%(cza + d)2i cz1+d czm+d
General form of SL(2, R) invariant operator:
Kf](z1, 22) = / dudvu® 27572y (%) (21, 231)

Eigenfunctions: ¥ = Si (21 — 2)N, KUy, =rknTpng

KN = / dudva® 27272y (ﬂ) 1—v—ul.

uv

An invariant K can be restored by its spectrum, k.



One-loop examples

Momentum representation:

f(21722):/dUIdu2€_i“121_iu222}.('[l/1,UQ)

[H](u1, u2) = / dvr dvad(uy + uz — v1 — v2) H(u, uz|vi, v2) fvi, v2),

oo

> Hamiltonian:
V1 — U1 u
H(ur, uz|vi, v2) = O(—u1, uz, ur — v1) ———— + O(u1, uz, v2 — Up) ———
V1 V2 v (u1 + uz)
U1

vi(u1 + uz)

O(ar,...,ap) = ﬁa(af) — ﬁ@(—ai) .
k=1

k=1

+ O(u1, u2, v1 — u1)

where

Eigenfuctions are Gegenbauer polynomials (u; + UQ)NCI(VS/2) (M)
u1 + u2



One-loop examples

Light-ray operators technique provides a convenient framework for study
of evolution equations.

Evolution kernels have a simple form in this representation

Symmetry generators have the standard form

The eigenfucntions are simple powers, (21 — ZQ)N



Symmetries

At the critical point o = «.. theory enjoys an exact conformal symmetry
Operators can be classified according the representations of the conformal group:
i[P*, On ()] = 9" O ()
i[D,On(2)] = (20 + AN)On(2)

z'[K“7 ON(.’E)] = |:2CL'I’L([E8) — 220* + 2AnaH + 22, Y | O (2)

On— conformal operator. Its transformation properties are completely determined by
the scaling dimension Ay and spin

c(A)

(Oa(z)O0ar(y)) = dans m

Scaling dimensions Ay are physical observables.




Symmetries

A tower of operators:
{On, = 05 0N(0), k=0,1,...00}

form the representation of the collinear subgroup of the conformal group:

L. =K_=n"K,, Ly=P;=ntP,, Lo=D-Mu;

[L+,Onk] = Ongy1,  [Lo, Onk] = (iv + B)Onky1,  [L—, Ong] = k(v + k)Onk—1,

where

N =(AN+ N)/2 Ay = AY" +yn(ax)



Symmetry of nonlocal operators

In perturbation theory:

On = Z ka(e)[omk]'

k+m=N

Oy is the solution of the RG equation
(M@M + W?V)ON = 0.
How the symmetry generators act on the nonlocal operator ?

Re-expansion

[paim)p(zm)] = Y #4250 Zw (21,2) Ong.

mk

[p(z1n)p(z2n)]—vector in "operator space", O y;—"basis vectors",
W Nk (21, 22)— coefficient functions ("coordinates") [depend on €]

(MO + H(ax))[O(21, 22)] = 0 = H(ow ) U ng(21, 22) = Vv () Uvi(21, 22)



Symmetry of nonlocal operators

The leading order symmetry generators

SO =8, —0,, S =20, + 20, +1, S =220, + 230, + 2+ 2.

In interacting theory the generators become modified by quantum corrections:

S<<)¢0) — Sa = Sé0> + ASQ

[La, [O(21, 22)]] = Z (21, 22)[La; Ong] =
Nk

= Z Sa ¥ ni(21, 22)Ong = Sa[O(21, 22)]
Nk

Two generators, S_, Sy, can be fixed in all orders without calculations

L is shift along n—direction = | S_ = —0,; — 0., = SO,

Lo counts "dimension":

1
LoOny = (k4 jn)Onp = | So = S — e+ SH()




Symmetry of nonlocal operators

The S generators can be calculated order by order in perturbation theory:

Explicit two loop calculation gives:

St =5 + (21 + ) (—e + %a*H(l)) + iaf{m +2, HO} 4 0(e%)
1 1 .
:SJ(rO) + (21 + 22) (—e + EH(Q*)) —+ Zai [H(Z), 21 + 2] + O(€3)

0)

1
[Sy,S5-] =280 (So =S\ —e+ 5H(@2))



Constraints for the evolution kernels

The generators have to satisfy sl(2) algebra commutation relations

[So,5-]=—5—, [S+, S-] =250, [So, S4] = Sy.

The last one is equivalent to — | [S4,H(ax)] =0

By construction [S(_D),H(a*)] = [S(()O),H(a*)} =0— [S—,H(ax)] =[S, H(ax)] =0

In the perturbative expansion
H(a.) = . HY 4+ o2 H® 4
Si(an) = 8 + a.ast +a2As® 4

(SO HW] = [s{ H®)] =0, for all k.

ok [Sio),H(l)] = 0 —| HW is s/(2) invariant operator

o 8, H®] = HW, A5,

o

of S H®] = HO, AP+ HE, A5V,

and so on.



Constraints for the evolution kernels

General form of the kernel
[H(k).ﬂ(zh 22) = / dudv h(k) ('ZL, 'U)f(ziav Zé}l)

The kernels are fixed up to invariant terms [Sa, Hiny] = 0, that is

HO —H® ¢ Ag®

muv

where AH®) (i.e. Ah() (u,v)) is determined by the consistency equations.

(k)

N are known

Then if the anomalous dimensions

H® (21 — )V = 7 (21 — 22)"

one can find the spectrum of the operator H® and restore the operator itself.

mnuv

(The kernel of an invariant invariant operator

hino (u, v) = (@0) 2~ 2h (2)

uv

and it is uniquely determined by its spectrum.)



@ 3-loop evolution kernels for the twist-2 operators in * theory

@ 2-loop kernels in ¢ theory

@ 2-loop kernels for flavor nonsinglet operators in QCD



QCD: Nonsinglet sector

One loop evolution kernel

1
- U " "
[Hel(z1, 22) = / du— [2<P(Zl, z2) = ¢(21s, 22) = @(21, Z;l)} ;
0

1 w
(el (21, 22) = / du / (2, 2,)
0] 0

1 ~
Sy = S(+0) + (21 + 22) ax ( — bo + §H(1)) —2axCrz12H

a = as/4r and € = byax + O(a?).

1 —
[77@](21,22):/ du [%Hnu} (et 22) — o(a1, 281
0



Two loop evolution kernel

1
H® = byCrHy, + C2Hp + CpCaHy + (C’% - ECFCA) P, Hp

H, and Hp invariant operators

1 w
[Hpap](zl,zQ)ZS/ du/ dvga(ziuz,zéul){lnz?—ern%}
0 0

uv _
T=— and T=1-—7
uv

8 2, 4~
Hy=4 ——-+ - —6((3) — —H+ AH
A ( 3+37T ¢(3) 3 + )

1 w
; ; 2 1
[Aw](zl,m:/ du/ d”@(zfzazzuﬁ{Q(Liz(T)—Liz(l))+1H27’—71n77'+§0}
T
0 0



Two loop evolution kernel

2
HF =4 (6 + 571'2 - 12C(3) + Hinv + Hm'nv)

1 u
27
[Hin,fulp](Z1722)=—/ du/ dvap(zfz,zé’l){4Lig(T)+21n27’—+1nr—2( T)ln%}
T
0 0

1 @
[Huinwp] (21, 22) = / du/ dv (219, 25, {ln2ﬂ+ln2@—21nu1nﬂ—21nvln®
0 0

+1n2(1—u—v)—lnu—lnv+2(Elnﬁ-&-gln@)}
u v

1
. _r3 _ 1+ u u
_2/0 du;lnu[i —Ilnu+ z lnu] (2(,0(21722)—W(zlz,ZQ)—w(zl,zzl))



Two loop evolution kernel

5~ 11
Hy, =4 |- 2H+ —H—
bo [ 3 3

13

R 74 ’
T H+7~l]

1

37 a u u

" ol(z1, 22) = / du; 11”7[2%0(% z2) — (212, 22) — (21, 221)} ,
0

1 T
H ¢l(21, 22) = / du/ dv (219, 257) In(1 — u — v)
0 0



