

Kirchhoff-Institut für Physik

ECHo Experiment

Loredana Gastaldo for the ECHo collaboration

Heidelberg University

Contents

- Electron capture process: The case of ¹⁶³Ho
- Metallic Magnetic Calorimeters
- Recent results
- ECHo experiment

A non- zero neutrino mass affects the de-excitation energy spectrum

A non- zero neutrino mass affects the de-excitation energy spectrum

Atomic de-excitation:

•X-ray emission

•Auger electrons

•Coster-Kronig transitions

A non- zero neutrino mass affects the de-excitation energy spectrum

Atomic de-excitation:

- •X-ray emission
- •Auger electrons
- •Coster-Kronig transitions

Calorimetric measurement

A non- zero neutrino mass affects the de-excitation energy spectrum

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{m_{\nu}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

The case of ¹⁶³Ho

 $^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$

 $^{163}_{66}$ Dy^{*} $\rightarrow ^{163}_{66}$ Dy + E_{C}

• $Q_{\rm EC} \cong 2.5 \ {\rm keV}$

•
$$\tau_{1/2} \cong 4570$$
 years

The case of ¹⁶³Ho

$$^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e$$

$$^{163}_{66}$$
 Dy* \rightarrow^{163}_{66} Dy+ E_{C}

• $Q_{\rm EC} \cong 2.5 \ {\rm keV}$

•
$$\tau_{1/2} \cong$$
 4570 years

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

 $N_{\rm ev} > 10^{14}$

Detector performance

From M. Galeazzi et al., arXiv:1202.4763v2 [physics.ins-det]

$$N_{\rm ev} > 10^{14}$$

 $f_{\rm pp} < 10^{-5}$

Detector performance

 $N_{\rm ev} > 10^{14}$ $f_{\rm pp} < 10^{-5}$ $\Delta E_{\rm FWHM} < 10 \,{\rm eV}$

Detector performance

Low temperature Metallic Magnetic Calorimeter

MMCs: Concept

MMCs: Concept

• Working temperature below 100 mK

small specific heat large temperature change small thermal noise

• Very sensitive temperature sensor

MMCs: Concept

Energy resolution --- Why ,micro'-calorimeter

Thermal fluctuations of energy between absorber, thermometer and bath lead to

$$\Delta E_{\rm FWHM} \simeq 2.36 \sqrt{4k_{\rm B}C_{\rm Abs}T^2} \sqrt{2} \left(\frac{\tau_0}{\tau_1}\right)^{1/4}$$

e.g. **1eV** for C = 1 pJ/K at T = 50 mK

MMCs: Readout

Two-stage SQUID setup with flux locked loop to linearize the first stage SQUID allows for:

- Iow noise
- Iarge bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

MMCs: Geometries

MMCs: Applications

- X-ray spectroscopy
 - atomic physics
 - astronomy
- X-ray imaging
 - Iarge MMC arrays
 - microwave SQUID multiplexing
- Detection of molecular fragments
- Radiation standards for metrology
- Experiments for neutrino physics
 - β decay of ¹⁸⁷Re (MARE)
 - EC of ¹⁶³Ho (ECHo)
 - $0\nu 2\beta$ (AMoRE & LUMINEU)

MMCs: Examples

maXs: 1d-array for soft x-rays

8

• 1×8 x-ray absorbers

- 250µm×250µm gold, 5µm thick
- >98% Qu.-Eff. @ 6 keV
- electroplated into photoresist mold (RRR>15)
- mech/therm contact to sensor by stems to prevent loss of initial hot phonons

• Au: ¹⁶⁶Er_{300ppm} temperature sensors

• co-sputtered from pure Au and high conc. AuEr target

• Meander shaped pickup coils

- 2.5 μ m wide Nb lines, ~400 nm thick
- *I*_c ≈ 100mA

• On-chip persistent current switch (AuPd)

maXs: 1d-array for soft x-rays (T=20 mK)

maXs: 1d-array for soft x-rays (T=20 mK)

¹⁶³Ho Detector: First prototype

- Absorber for calorimetric measurement → ion implantation @ ISOLDE-CERN
- Two pixels have been simultaneusly measured
- ⁵⁵Fe calibration source was collimated only on one pixel

¹⁶³Ho Detector: First prototype

- Newest generation C6X114W SQUIDs (PTB Berlin)
 - \rightarrow best noise performance

- Al bonding wires for electrical connections
- Au bonding wires for thermal connections

¹⁶³Ho Detector: Experimental environment

- Cu holder
- CuFlon circuit board
- Pb shielding
- ³He/⁴He dilution refrigerator (Oxford instruments)
- Cu experimental platform (Au plated)
- T ≈ 20 mK

¹⁶³Ho Detector: Experimental environment

Layered precooling:

0.5 m

- Liquid N₂ ~ 77 K
- Liquid ${}^{4}\text{He} \sim 4.2 \text{ K}$

Dilution unit

- 1^{st} stage ~ 1.5 K
- 2^{nd} stage ~ 0.6 K
- Experimental platform ~ 20 mK

Rise Time ~ 130 ns

• Rise Time ~ 130 ns

• $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV}$

- Rise Time ~ 130 ns
- $\Delta E_{\rm FWHM} = 7.6 \, {\rm eV} @ 6 \, {\rm keV}$
- Non-Linearity < 1% @6keV

- Rise Time ~ 130 ns
- $\Delta E_{\rm FWHM} = 7.6 \, {\rm eV} \, @ \, 6 \, {\rm keV}$
- Non-Linearity < 1% @6keV

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

ECHo experiment

ECHo experiment

• Required activity in the detectors: Final experiment $\rightarrow >10^6$ Bq $\rightarrow >10^{17}$ atoms

- Required activity in the detectors: Final experiment \rightarrow >10⁶ Bq \rightarrow >10¹⁷ atoms
- ¹⁶³Ho can be produced by charged particle activation through direct or indirect way ^{nat}Dy(p,xn) ¹⁶³Ho ^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Er155	Er156	Er157 18.65 m	Er158	Er159	Er160 28.58 h	Er161	Er162	Er163	Er164	Er165	Er166
7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+
С,α	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6
Ho154 11.76 m	Ho155 48 m	Ho156 56 m	Ho157 12.6 m	Ho158 11.3 m	Ho159 33.05 m	Ho160 25.6 m	Ho161 2.48 h	Ho162 15.0 m	Ho163 4570 y	Ho164 29 m	Ho165
(2)-	5/2+	(4+)	7/2-	5+ *	7/2-	5+ *	7/2-	l+ *	7/2-	l+ *	7/2-
C ,α	EC	EC	EC	EC	EC	EC	EC	EC	EC	ΕC ,β ⁻	100
Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164
6.4 h 7/2(-)	3.0E+6 y 0+	9.9 h 3/2-	0+	8.14 h 3/2-	0+	144.4 d 3/2-	0+	5/2+	0+	5/2-	0+
	α	EC	0.06	EC	0.10	EC	2.34	18.9	25.5	24.9	28.2
Tb152	Tb153	Tb154	Tb155	Tb156	Tb157	Tb158	Tb159	Tb160	Tb161	Tb162	Tb163
2-	5/2+	0	3/2+	3-	3/2+	3-	3/2+	3-	3/2+	1-	3/2+
С,α *	EC	EC,β-	EC	EC,β-	EC	EC,β-	100	β-	β-	β-	β-

- Required activity in the detectors: Final experiment \rightarrow >10⁶ Bq \rightarrow >10¹⁷ atoms
- ¹⁶³Ho can be produced by charged particle activation through direct or indirect way ^{nat}Dy(p,xn) ¹⁶³Ho ^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho
- \rightarrow ¹⁶³Ho can be produced by via (n, γ)-reaction on ¹⁶²Er

Er155 5.3 m	Er156	Er157 18.65 m	Er158 2.29 h	Er159 36 m	Er160 28.58 h	Er161 3.21 h	Er162	Er163 75.0 m	Er164	Er165	Er166
7/2-	0+	3/2-	0+	3/2-	0+	3/2-	0+	5/2-	0+	5/2-	0+
C,α	EC	EC	EC	EC	EC	EC	0.14	EC	1.61	EC	33.6
Ho154 11.76 m	Ho155 48 m	Ho156 56 m	Ho157 12.6 m	Ho158 11.3 m	Ho159 33.05 m	Ho160 25.6 m	Ho161 2.48 h	Ho162 15.0 m	Ho163 4570 y	Ho164 29 m	Ho165
(2)-	5/2+	(4+)	7/2-	5+ *	7/2-	5+ *	7/2-	l+ *	7/2-	l+ *	7/2-
C ,α	EC	EC	EC	EC	EC	EC	EC	EC	EC	ΕC ,β ⁻	100
Dy153	Dy154	Dy155	Dy156	Dy157	Dy158	Dy159	Dy160	Dy161	Dy162	Dy163	Dy164
0.4 n 7/2(-)	3.0E+0 y 0+	9.9 h 3/2-	0+	8.14 n 3/2-	0+	144.4 d 3/2-	0+	5/2+	0+	5/2-	0+
	α	EC	0.06	EC	0.10	EC	2.34	18.9	25.5	24.9	28.2
Tb152	Tb153	Tb154	Tb155	Tb156	Tb157	Tb158	Tb159	Tb160	Tb161	Tb162	Tb163
17.5 h 2-	2.34 d 5/2+	21.5 h 0	5.32 d 3/2+	5.35 d 3-	/1 y 3/2+	180 y 3-	3/2+	72.3 d 3-	0.88 d 3/2+	7.00 m 1-	19.5 m 3/2+
C ,α *	EC	* ΕC,β ⁻	EC	* ΕC,β ⁻	EC	* ΕC,β-	100	β-	β-	β-	β-

- Required activity in the detectors: Final experiment \rightarrow >10⁶ Bq \rightarrow >10¹⁷ atoms
- ¹⁶³Ho can be produced by charged particle activation through direct or indirect way ^{nat}Dy(p,xn) ¹⁶³Ho ^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho
- > 163 Ho can be produced by via (n, γ)-reaction on 162 Er

Two sources already produced

- ✓ Helmoltz Zentrum Berlin
- ✓ Institut Laue-Langevin in Grenoble

- Required activity in the detectors: Final experiment $\rightarrow >10^6$ Bq $\rightarrow >10^{17}$ atoms
- ¹⁶³Ho can be produced by charged particle activation through direct or indirect way ^{nat}Dy(p,xn) ¹⁶³Ho ^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho
- > 163 Ho can be produced by via (n, γ)-reaction on 162 Er

Two sources already produced

- ✓ Helmoltz Zentrum Berlin
- ✓ Institut Laue-Langevin in Grenoble
- Purity: No radioactive contaminants and removed target material
- High efficiency purification methods
- Chemical form: depends on the absorber preparation (ion implantation, dilute alloys)

ECHo experiment

ECHo experiment: µwave SQUID multiplexing

ECHo experiment: 64-pixel chip

ECHo experiment: 64-pixel chip

ECHo experiment

ECHo experiment

Background sources:

- Contamination of the source \rightarrow ^{166m}Ho
- Environmental radioactivity
- Induced secondary radiation by cosmic rays

Background sources:

- Contamination of the source \rightarrow ^{166m}Ho
- Environmental radioactivity
- Induced secondary radiation by cosmic rays

Monte Carlo simulations Dedicated experiments

Background sources:

- Contamination of the source \rightarrow ^{166m}Ho
- Environmental radioactivity
- Induced secondary radiation by cosmic rays

Monte Carlo simulations Dedicated experiments

First measurements underground in Modane winter 2013

Background sources:

- Contamination of the source \rightarrow ^{166m}Ho
- Environmental radioactivity
- Induced secondary radiation by cosmic rays

Monte Carlo simulations Dedicated experiments

First measurements underground in Modane winter 2013

Selection of materials for the experimental set-up

- ✓ Definition of detector design \rightarrow veto
 - Designs for the shielding

ECHo experiment

ECHo experiment: Q_{EC} determination

Penning Trap mass spectroscopy

Next future : SHIPTRAP (GSI) \rightarrow Q_{EC} determination within 100 eV

In few years: PENTATRAP (MPI-K HD) \rightarrow Q_{EC} determination within 1 eV

Courtesy S. Eliseev, MPI-K HD

ECHo experiment

ECHo experiment: spectral shape

How precise do we know the calorimetric spectrum of ¹⁶³Ho?

$$\frac{dW}{dE_{\rm C}} = \mathbf{A}(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{m_{\nu}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} \frac{B_{\rm H} \varphi_{\rm H}^2(0)}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

Density Functional Theory (DFT) & Quasiparticle Random Phase Approximation (QRPA)

SOLID STATE EFFECTS

Experimental investiations: ¹⁶³Ho implanted in different materials Simple ¹⁶³Ho molecules implanted in Au Core Level binding energy Shift (CLS): calculated using the complete screening approximation of DFT

Sensitivity to:

keV sterile neutrino

Cosmic neutrino background

ECHo experiment

¹⁶³Ho experiments

- Started R&D in 2011
- ◆ Small scale experiment with ~100 pixels within the next three years
- Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

¹⁶³Ho experiments

- Started R&D in 2011
- ◆ Small scale experiment with ~100 pixels within the next three years
- Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

- Established in 2013 (ERC Advanced Grants for Prof. S. Ragazzi)
- Some R&D done already within the MARE experiment

http://artico.mib.infn.it/nucriomib/general-infos/holmes-approved

¹⁶³Ho experiments

- Started R&D in 2011
- ◆ Small scale experiment with ~100 pixels within the next three years
- Large scale experiment to reach sub-eV sensitivity to neutrino mass

http://www.kip.uni-heidelberg.de/echo/

Some R&D done already within the MARE experiment

http://artico.mib.infn.it/nucriomib/general-infos/holmes-approved

OTHERS

HOLMES

- LANL + NIST (last two years)
- investigation for source production
- detector development for calorimentric measurements

http://conference.ipac.caltech.edu/ltd-15 (Kunde, Schmidt, Croce, Fowler)

Conclusion

FIG. 5: IBEC spectrum in ¹⁶³Ho decay [22], showing prominent X-ray lines.

Some early measurements with a ¹⁶³Ho source [22, 23] were based on IBEC (Internal Bremsstrahlung in Electron Capture), the first-principle theory of which is fiendishly complex both above [24] and -more so- below [4] the energies coinciding with X-ray resonances. One example is shown in Fig. 5. Other measurements were calorimetric [25], see Fig. 6. The most stringent of the early mass limits, from [23] and [26] were, respectively:

$$m_{\nu} < 225 \text{ eV at } 95\% \text{ CL},$$

 $m_{\nu} < 490 \text{ eV at } 68\% \text{ CL}.$

The recent progress may be illustrated by comparing Fig. 6 [25] with the preliminary results shown in Fig. 7, from the incipient experiment ECHo [27], which employs MMCs (Magnetic Metallic Calorimeters). The unlabeled peaks in Fig. 7 are due to ¹⁴⁴Pm, an impurity accompanying ¹⁶³Ho at the implantation stage at ISOLDE-CERN, an early test of source-preparation techniques.

One cannot resist the temptation of showing a scheme and a picture of the set of four MMCs in the 129 Ho detector prototype of ECHo [27]: Figs. 8 and 9. There is satisfaction associated with the possibility of measuring a tiny quantity –the neutrino mass– with nano-scale detectors. Even with the associated cryogenics and electronics, the apparatuses are still table-top.

V. THE THEORY OF EC IN ¹⁶³Ho

The EC process, all by itself, does not yield any information on the neutrino mass, or on anything else, for that matter. The mere information that "it happened" is

FIG. 7: Test results of ECHo [27] for the calorimetric spectrum of ¹⁶³Ho decay. The unlabeled impurities are ¹⁴⁴Pm. The continuous (red line) theory [5] is based on Eq. (9).

provided by the fact that the daughter atom, and sometimes its nucleus, are unstable. The hole in an atomic

outer electrons cascade inwards, see Fig. 5.

The measured $Q = M(^{433}\text{Ho}) - M(^{433}\text{Dy})$ is so small that EC is only energetically allowed from 163 Ho orbitals with principal quantum number n > 2. The emission of X-rays from holes in such external shells is negligible compared to that of atomic de-excitations involving electron emission (in the classical parlance, the "fluorescence yields" are tiny). The electron-emitting transitions have

A. De Rujula arXiv:1305.4857v1 [hep-ph] 21 May 2013

The recent progress may be illustrated by comparing Fig. 6 [25] with the preliminary results shown in Fig. 7, from the incipient experiment ECHo [27], which employs MMCs (Magnetic Metallic Calorimeters). The unlabeled peaks in Fig. 7 are due to ¹⁴⁴Pm, an impurity accompanying ¹⁶³Ho at the implantation stage at ISOLDE-CERN, an early test of source-preparation techniques.

One cannot resist the temptation of showing a scheme and a picture of the set of four MMCs in the ¹⁶³Ho detector prototype of ECHo [27]: Figs. 8 and 9. There is satisfaction associated with the possibility of measuring a tiny quantity –the neutrino mass– with nano-scale detectors. Even with the associated cryogenics and electronics, the apparatuses are still table-top.

Thank you!

