Large-scale alignments of quasar polarisations A detailed study of the spinless-particle scenario

Alexandre Payez

in collaboration with Jean-René Cudell and Damien Hutsemékers based on [arXiv:1308.6608] Outline

Motivation

- Astrophysical context
- An unexpected observation (quasars and polarisation)

Mixing with axion-like particles

- The mechanism
- Possible issues?
- Constraints

Conclusions

- Summary
- Some prospects

Getting started

This work all about light with puzzling properties from far-away sources

What are the scales involved? Why is this a problem?

000000

What does the observable Universe look like? The current framework and the largest structures

When we consider the Universe as a whole

Averaging over sufficiently large distances, there is

- no preferred location
- no preferred direction

Galaxy surveys (2dF, SDSS)

Superclusters of galaxies, filamentary structure

What does the observable Universe look like? The current framework and the largest structures

When we consider the Universe as a whole

Averaging over sufficiently large distances, there is

- no preferred location
- no preferred direction

Galaxy surveys (2dF, SDSS)

Superclusters of galaxies, filamentary structure

0000000

00000

Galaxies as elementary blocks

Galaxies

 \sim hundreds of billions of stars typical scale \sim 10,000 parsecs (pc)

...that tend to cluster

Clusters of galaxies

 \sim thousands of galaxies

Superclusters of galaxies \sim dozens/hundreds of clusters

Astrophysical information derived from light Various properties, complementary indications

Most of what we know and observe in astrophysics comes in the form of light

Bright sources are therefore very interesting

0000 00000 0000

000000

Quasars and active galactic nuclei

- Among the most distant objects observed
- Found at the center of active galaxies
- Compact objects:

source of continuum light ≤ 1 pc \updownarrow Milky Way \sim 30,000 pc

- Up to $\sim 10^4$ times more luminous than a whole galaxy
- Non-spherical morphology
 → emission of polarised light

High-luminosity active galactic nuclei or "quasars"

A valuable tool to study the distant Universe

THE ALIGNMENT EFFECT

[Hutsemékers (1998)]

Quasar polarisation vectors (in visible light)

ullet tend to be aligned in huge regions of the sky (\sim 1 Gpc)

2 this effect depends on their distance.

linear pol.

Stokes parameters

Decomposition in an orthonormal basis

Built from intensities $\begin{cases}
I = \text{Total intensity} \\
Q = |\uparrow|^2 - |\rightarrow|^2 \\
U = |\nearrow|^2 - |\searrow|^2 \\
V = \text{Circular polarisation}
\end{cases}$

Complete description of polarisation

polarisation degrees

$$p_{\text{lin}} = \sqrt{q^2 + u^2}, \quad p_{\text{circ}} = |v|$$

polarisation angle

$$\varphi = \frac{1}{2} \operatorname{atan} \left(\frac{u}{q} \right)$$

Normalised Stokes parameters

$$q=rac{Q}{I}, \quad u=rac{U}{I}, \quad ext{and} \ v=rac{V}{I}$$

00

000000

Stokes parameters

Decomposition in an orthonormal basis

Built from intensities			
ſ	1	=	Total intensity
J	Q	=	$ \uparrow ^2 - \rightarrow ^2$
	U	=	$ \nearrow ^2 - \searrow ^2$
l	V	=	Circular polarisation

Complete description of polarisation

Stokes ightarrow motivation = unpolarised light (no preferred behaviour) $I^2 \ge Q^2 + U^2 + V^2$

Quasar light is partially polarised

Quasar polarisations are correlated over huge scales

Various statistical tests give P_{random} from 3×10^{-5} to 2×10^{-3} see also [Jain, Narain, Sarala (2004)]

- all types of quasars
- expected polarisation preserved
- high galactic latitudes ($|b| \ge 30^\circ$)

• criterion: good quality
$$(
ho_{\sf lin} \geq 0.6\%, \, \Delta arphi \leq 14^\circ)$$

Latest all-sky sample (1/2 from 355 quasars literature)

Quasar polarisations are correlated over huge scales

Non-local effect

Different alignments for regions along the same line of sight

Quasar polarisations are correlated over huge scales

Non-local effect

Different alignments for regions along the same line of sight

The effect as seen in a (q, u) linear polarisation space

[Payez, Cudell, Hutsemékers (2011)]

Looking for an explanation How spinless particles enter the game

- Mechanism leading to an alignment of quasar axes in each region? but no effect in radio waves [Joshi, Battye, Browne, et al. (2007)]?
- Ø Mechanism affecting light during its propagation?
 NB: addition of a small systematic polarisation ⇒ alignment effect

Axion-like particles (ALPs), ϕ : ID Card

- Pseudoscalar particles like π^0 (also scalar)
- Generic prediction of theories beyond the Standard Mode
- Goldstone bosons (global U(1) broken @ high scale f_a)
- Very (very) small mass, interacting very (very) weakly
- Effective coupling with light (gets stronger with $eg \omega$)

in external transverse magnetic or electric fields, $\gamma \leftrightarrow \phi$ (Primakoff effect for π^0)

- Mechanism leading to an alignment of quasar axes in each region? but no effect in radio waves [Joshi, Battye, Browne, et al. (2007)]?
- ② Mechanism affecting light during its propagation? NB: addition of a small systematic polarisation ⇒ alignment effect

Axion-like particles (ALPs), ϕ : ID Card

- Pseudoscalar particles like π^0 (also scalar)
- Generic prediction of theories beyond the Standard Model
- Goldstone bosons (global U(1) broken @ high scale f_a)
- Very (very) small mass, interacting very (very) weakly
- Effective coupling with light (gets stronger with $\uparrow \omega$)

in external transverse magnetic or electric fields, $\gamma \leftrightarrow \phi$ (Primakoff effect for π^0)

Searching for ALPs using their coupling with light

A step towards a spinless-particle scenario

Photons can mix with axion-like particles in faint but extended magnetic fields on the way

[Jain et al. (2002)], [Das et al. (2004)], [Piotrovich et al. (2008)], [Payez et al. & Hutsemékers et al. (2008)], ...

How would this lead to an alignment tendency?

Axion-like particles couple to one direction of polarisation

$$\mathsf{Pseudoscalar}\ \phi:\ \mathcal{L}_{\phi\gamma\gamma} = \frac{1}{4}\ g\phi F_{\mu\nu}\widetilde{F}^{\mu\nu} = -g\phi(\vec{E}\cdot\vec{B}) = -g\phi(\vec{\mathcal{E}_r}\cdot\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r},\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r}$$

[Sikivie (1983)], [Maiani et al. (1986)], [Raffelt, Stodolsky (1988)], ...

Dichroism:
 ⇒ Changes linear polarisation

Birefringence:
 ⇒ Changes circular polarisation

Axion-like particles couple to one direction of polarisation

$$\mathsf{Pseudoscalar}\ \phi:\ \mathcal{L}_{\phi\gamma\gamma} = \frac{1}{4}\ g\phi F_{\mu\nu}\widetilde{F}^{\mu\nu} = -g\phi(\vec{E}\cdot\vec{B}) = -g\phi(\vec{\mathcal{E}_r}\cdot\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r},\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r}$$

[Sikivie (1983)], [Maiani et al. (1986)], [Raffelt, Stodolsky (1988)], ...

• Dichroism: \Rightarrow Changes linear polarisation $\gamma \qquad \phi$ $\uparrow \qquad -$ ▶ Birefringence: ⇒ Changes circular polarisation

Axion-like particles couple to one direction of polarisation

$$\mathsf{Pseudoscalar}\ \phi:\ \mathcal{L}_{\phi\gamma\gamma} = \frac{1}{4}\ g\phi F_{\mu\nu}\widetilde{F}^{\mu\nu} = -g\phi(\vec{E}\cdot\vec{B}) = -g\phi(\vec{\mathcal{E}_r}\cdot\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r},\vec{\mathcal{B}}) = -g\phi(\vec{\mathcal{E}_r}$$

[Sikivie (1983)], [Maiani et al. (1986)], [Raffelt, Stodolsky (1988)], ...

• Dichroism: \Rightarrow Changes linear polarisation γ ϕ γ ϕ γ ϕ β ● Birefringence:
 ⇒ Changes circular polarisation

A first application: toy model Generating linear polarisation

[Payez, Cudell, Hutsemékers (2011)]

 $\omega_{\rm p} \gtrsim 410$ eV, fixed (typical in supercluster)

۲

۲

to explain quasar data

A first application: toy model Generating linear polarisation

THE ALIGNMENT EFFECT 2.0

[Hutsemékers, Borguet, Sluse, Cabanac, Lamy (2010)]

Quasar polarisation vectors (in visible light)

• tend to be aligned in huge regions of the sky (\sim 1 Gpc)

2 this effect depends on their distance.

Output: no evidence for circular polarisation (typical uncertainty < 0.1%)</p>

critical for the ALP scenario

.. or is it?

THE ALIGNMENT EFFECT 2.0

[Hutsemékers, Borguet, Sluse, Cabanac, Lamy (2010)]

Quasar polarisation vectors (in visible light)

• tend to be aligned in huge regions of the sky (\sim 1 Gpc)

linear pol.

this effect depends on their distance.

• update: no evidence for circular polarisation (typical uncertainty < 0.1%)</p>

→ critical for the ALP scenario

. or is it?

A wave-packet treatment of the mixing

[Payez, Cudell, Hutsemékers (2011)]

With relativistic wave packets

 \Rightarrow the circular polarisation v generated can be significantly reduced.

While with plane waves, the circular polarisation can be as large as the linear one.

The reason why it can be reduced Frequency dependence of the effect

Considering:

- fixed-energy solutions
- a single $\vec{\mathcal{B}}$ region.

In the basis $(ec{e}_{\perp}, ec{e}_{\parallel})$:

- A_⊥(z) does not feel the interaction (decoupled);
- Equation of motion for $A_{\parallel}(z)$ and $\phi(z)$:

$$\left[\left(\omega^{2}+\frac{\partial^{2}}{\partial z^{2}}\right)-\mathcal{M}(\omega)\right]\left(\begin{array}{c}A_{\parallel}(z)\\\phi(z)\end{array}\right)=0;$$

 \Rightarrow "C(z)" & "D(z)" = mixtures of A_{\parallel} and of ϕ , with eigenvalues $\mu_{C,D}(\omega)$.

 \Rightarrow Phase-shift depends on ω , so does circular polarisation

Wave packets = ''averaging over ω

The reason why it can be reduced Frequency dependence of the effect

Considering:

- fixed-energy solutions
- a single $\vec{\mathcal{B}}$ region.

In the basis $(ec{e}_{\perp}, ec{e}_{\parallel})$:

- $A_{\perp}(z)$ does not feel the interaction (decoupled);
- Equation of motion for $A_{\parallel}(z)$ and $\phi(z)$:

$$\left[\left(\omega^{2}+\frac{\partial^{2}}{\partial z^{2}}\right)-\mathcal{M}(\omega)\right]\left(\begin{array}{c}A_{\parallel}(z)\\\phi(z)\end{array}\right)=0;$$

 \Rightarrow "C(z)" & "D(z)" = mixtures of A_{\parallel} and of ϕ , with eigenvalues $\mu_{C,D}(\omega)$.

 \Rightarrow Phase-shift depends on ω , so does circular polarisation Wave packets = "averaging over ω "

⇒ $\langle v(z) \rangle_{\omega}$, as circular polarisation $v(z, \omega)$ can be positive or negative ⇒ alignment still possible, as $p_{\text{lin}}(z, \omega) = \sqrt{q^2(z, \omega) + u^2(z, \omega)} \ge 0$

 $egin{array}{lll} {\sf NB}: ec{{m E}}_{ot,\parallel} = i\omegaec{{m A}}_{ot,\parallel} \ ({\sf temporal\ gauge}) \end{array}$

Not enough to save this kind of explanation $_{\mbox{It's all about bandwidths}}$

Measurements were performed in

- White light \rightarrow wave packets OK: no filter, same as before
- Bessell V filter ightarrow wave packets KO: $\Delta \omega$ not large enough to see sufficient $\downarrow v$

If axions were at work, given the "narrow bandwidth" of the V filter, circular polarisation should have been observed.

Can we reject this scenario?

ightarrow Focus on V-filter data "~ quasi-monochromatic"

Not enough to save this kind of explanation $_{\mbox{It's all about bandwidths}}$

Measurements were performed in

- White light \rightarrow wave packets OK: no filter, same as before
- Bessell V filter ightarrow wave packets KO: $\Delta \omega$ not large enough to see sufficient $\downarrow v$

If axions were at work, given the "narrow bandwidth" of the V filter, circular polarisation should have been observed.

Can we reject this scenario?

ightarrow Focus on V-filter data " \sim quasi-monochromatic"

Towards the North Galactic Pole direction Most observed objects are located in that direction; $z \in [0.4, 2.2]$

[Courtois et al. (2013)]

Different scenarios for the magnetic field

Towards center of the local supercluster

Magnetic field in the plane of the local supercluster

Rotation Measures [Vallée (2002)]

Domain structure

pprox 100 kpc random cells with pprox 2 μ G adding up to pprox 10 Mpc

Ø supercluster scale: 5–10 times smaller

Only detection available for local supercluster

 $g\mathcal{B}$ always appear together: one can rescale

This field is important

 \Rightarrow very large field strength given coherence length & essentially the latest

Different scenarios for the magnetic field

ALP-photon scenario looks dead for real, now

1 zone creates an alignment but fails for circular polarisation;

100 zones might pass the circular polarisation test but fails for the alignment (lack of common preferred direction).

> + background field (\sim 10 times weaker): still no alignment. if we try to recover an alignment: too much circular polarisation

Different scenarios for the magnetic field in our supercluster

26 36

Different scenarios for the magnetic field in our supercluster

Can the most popular scenario indeed explain alignments of quasar polarisation?

Our answer

very unlikely given present data, constraints, estimations of magnetic fields

00000

New constraints on axion-like particles Forget about reproducing coherent alignments

ALPs can be very efficient at producing polarisation & contradict quasar polarisation data

\Rightarrow New constraints on these elusive particles

consider quasar classes with smallest intrinsic polarisations in visible \Rightarrow compare amount due to the mixing with observations (p_{lin} and p_{circ})

00000

New constraints on axion-like particles Forget about reproducing coherent alignments

ALPs can be very efficient at producing polarisation & contradict quasar polarisation data

\Rightarrow New constraints on these elusive particles

consider quasar classes with smallest intrinsic polarisations in visible \Rightarrow compare amount due to the mixing with observations (p_{lin} and p_{circ})

Defining our sample

Quasar circular polarisation data in visible light

Subsample for our contraints on ALPs

- only V-filter data ("more monochromatic")
- only the least polarised classes

In fact

no evidence for non-vanishing p_{circ} @ 3σ (except for 2 blazars with $p_{lin} > 20\%$)

Defining our sample

Linear polarisation data for quasars in that direction (from catalogs)

Defining our sample

Linear polarisation data for quasars in that direction (from catalogs)

Start with unpolarised light (very conservative, especially for p_{circ})

For each couple (m,g):

- Generate random configuration
- $\textbf{@ Solve axion-photon mixing} \rightarrow \text{polarisation generated}$

O Probability to be smaller than the observed one?

$$P = N(p^{\text{obs}} \ge p^{\text{th}})/N_{\text{tot}}$$

Repeat and average over many configurations

configuration

 $\stackrel{def}{=}$ {domain sizes, magnetic field directions (3D), electron densities}

New constraints on axion-like particles Forget about reproducing coherent alignments

New constraints on axion-like particles Illustration of distributions corresponding to a 2σ C.L. exclusion; $m = 10^{-20}$ eV

[Payez, Cudell, Hutsemékers (2012)]

New constraints on axion-like particles Illustration of distributions corresponding to a 3σ C.L. exclusion; $m = 10^{-20}$ eV

[Payez, Cudell, Hutsemékers (2012)]

New constraints on axion-like particles

[Payez, Cudell, Hutsemékers (2012)] See next edition of the Review of Particle Properties (Particle Data Group) 10^{-10} 10^{-11} (GeV^{-1}) 10^{-12} \vec{B}_{domain} $\vec{B}_{domain,0}$ 10^{-13} CAST Stable constraints SN1987A 2σ o $1\sigma +$ 3σ • 10^{-14} 10^{-22} 10^{-20} 10^{-18} 10^{-16} 10^{-14} 10^{-12} m (eV)

New constraints on axion-like particles Evolution of the plateau with the average electron density

[Payez (2013)]

Searching for ALPs using their coupling with light

Summary

- Existence of large-scale correlations in quasar polarisation data
- Most popular scenario: mixing with axion-like particles
- Dichroism would explain data but birefringence spoils it
- A wave-packet treatment recovers partially the mechanism but quasi-monochromatic measurements contradict the predictions
- Last magnetic field region: confirms that the mechanism is excluded
- Improve current bounds on axion-like particles using plin and pcirc

Some prospects

Alignment effect

- Coherent orientations in polarisation from type-II quasars?
- A new statistical approach [Cudell, Pelgrims (work in progress)]

Axion-like particles

• Future: X-ray polarimetry = extremely interesting for astrophysical region \rightarrow could lead to new constraints or a discovery

Thank you

Evidence for a cosmic sandwich?

With this kind of interpretation:

Large-scale effect \Leftrightarrow Large-scale magnetic field

Simplest way to have different preferred directions: \rightarrow 2 huge (\equiv all photons pass through) \vec{B} zones, at z = 0 & z = 1, can do it.

...but there might have been other ways to deal with axion-like particles.

 \Rightarrow ALP flux?

In particle physics, spinless particles = the simplest case one can think of. Simpler than spinor (*e.g.* electrons) or vector (*e.g.* photons).

Examples:

۰

Axions [solve problem in QCD];

```
• Chameleons [f(R) theories];
```

```
• { Scalars
Pseudoscalars } [Super strings/Kaluza-Klein theories];
```

Axion-like particles

Axion-like particles: generic feature of extensions of the Standard Model.

This kind of particles

- From the theoretical point of view: very well motivated;
- From the experimental point of view: yet to be observed.

Axion-photon coupling and Primakoff effect Axions'influence on light-difference between scalars and pseudoscalars

$$\vec{E} = \vec{\mathcal{E}}_r + \vec{\mathcal{E}}, \quad \vec{B} = \vec{\mathcal{B}}_r + \vec{\mathcal{B}};$$

 $\vec{\mathcal{E}_r}, \vec{\mathcal{B}_r}$: orthogonal fields of the radiation reminder: $\vec{\mathcal{E}_r}$ defines the direction of polarisation $\vec{\mathcal{E}}, \vec{\mathcal{B}}$: possible external transverse fields for astrophysical applications: usually $\vec{\mathcal{B}} \neq 0, \vec{\mathcal{E}} = 0$

• γ polarised // to $\vec{\mathcal{B}}$ in the case of pseudoscalar ϕ :

$$\mathcal{L}_{\phi\gamma\gamma,\mathsf{ps}} = \frac{1}{4} g \phi F_{\mu\nu} \widetilde{F}^{\mu\nu} = -g \phi (\vec{E} \cdot \vec{B}) = -g \phi (\vec{\mathcal{E}}_{\mathbf{r}} \cdot \vec{\mathcal{B}}) = -g \phi (\vec{\mathcal{E}}_{\mathbf{r},\parallel} \cdot \vec{\mathcal{B}})$$

• γ polarised \perp to $\vec{\mathcal{B}}$ in the case of scalar ϕ :

$$\mathcal{L}_{\phi\gamma\gamma,\mathrm{sc}}=rac{1}{4}g\phi F_{\mu
u}F^{\mu
u}=rac{1}{2}g\phi(ec{B}^2-ec{E}^2)$$

and in $(\hat{\vec{B}})^2$ there is $\vec{\mathcal{B}} \cdot \vec{\mathcal{B}}_r$ ($\neq 0$ for non-zero coupling)

Coherent orientation of quasar polarisation vectors Showing the influence of dust in our galaxy—before subtraction

[Payez, Hutsemékers, Cudell (2010)]

Different alignments for regions along the same line of sight
 ⇒ Non-local effect

• Influence of our galaxy?

Coherent orientation of quasar polarisation vectors Showing the influence of dust in our galaxy—after subtraction

[Payez, Hutsemékers, Cudell (2010)]

Different alignments for regions along the same line of sight
 ⇒ Non-local effect

• Influence of our galaxy? X

Coherent orientation of quasar polarisation vectors Showing the influence of dust in our galaxy—after subtraction (extreme case)

[Payez, Hutsemékers, Cudell (2010)]

Different alignments for regions along the same line of sight
 ⇒ Non-local effect

In any case, not possible to suppress the effect in both regions.

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example n_{v} : number of nearest neighbours in 3D (free parameter).

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example n_{v} : number of nearest neighbours in 3D (free parameter).

 $s = \frac{1}{n_{tot}} \sum_{i}^{n_{tot}} \vec{\mathbf{v}_j} \cdot \left(\sum_{i}^{n_v} \frac{1}{n_v} \vec{\mathbf{v}_i} \right)$

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example n_{v} : number of nearest neighbours in 3D (free parameter).

[Hutsemékers (1998)]

e.g. *n_v* = 3

 $s = \frac{1}{n_{tot}} \sum_{i=1}^{n_{tot}} \vec{\mathbf{v}_j} \cdot \left(\sum_{i=1}^{n_v} \frac{1}{n_v} \vec{\mathbf{v}_i}\right)$

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example

[Hutsemékers (1998)]

 n_v : number of nearest neighbours in 3D (free parameter).

$$s = \frac{1}{n_{tot}} \sum_{j}^{n_{tot}} \vec{v_j} \cdot \left(\sum_{i}^{n_v} \frac{1}{n_v} \vec{v_i}\right)$$

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example

 n_v number of nearest neighbours in 3D (free parameter).

 $s = \frac{1}{n_{tot}} \sum_{i}^{n_{tot}} \vec{v_j} \cdot \left(\sum_{i}^{n_v} \frac{1}{n_v} \vec{v_i}\right)$

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example

 n_v : number of nearest neighbours in 3D (free parameter).

 $s = \frac{1}{n_{tot}} \sum_{i}^{n_{tot}} \vec{v_j} \cdot \left(\sum_{i}^{n_v} \frac{1}{n_v} \vec{v_i}\right)$

Coherent orientation of quasar polarisation vectors Quite a puzzling observation—global statistics

Significance Level: S.L. = Probability(no correlations between angles and positions in the full sample)

Global statistics, an example

 n_v : number of nearest neighbours in 3D (free parameter).

$$s = \frac{1}{n_{tot}} \sum_{j}^{n_{tot}} \vec{v_j} \cdot \left(\sum_{i}^{n_v} \frac{1}{n_v} \vec{v_i}\right)$$

$\begin{array}{c} Coherent \ orientation \ of \ quasar \ polarisation \ vectors \\ {\tt Quite \ a \ puzzling \ observation-global \ statistics} \end{array}$

