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1 Quantum Fluctuations in de Sitter Space

1.1 Scalar Perturbations

Consider action for single-field slow-roll model of inflation

1
5=3 [ dlav=g [R- (Vo) -2/ (6)] (1)
with the following gauge for the dynamical fields g;; and ¢

(Aided by Scalar-Vector-Tensor decomposition. We ignore the vector perturbations S; and
F; aren’t created by inflation and decay with the expansion of the universe.)

R remains constant outside the horizon, and we compute its correlation functions at
horizon crossing.

1.1.1 Free Field Action

Expand the action (1) up to O(R?)

with )
v=2zR, where 2 =a’— = 2d’, (5)

and transitioning to conformal time 7
Fourier expand the field v

where




1.1.2 Quantization

Promote the field v to quantum operator via

v = b= vp(T)ax + v (r)al (8)

where the creation and annihilation operators &ik and ay satisfy

[, ] = (27)°5(k — K, (9)

(g, vp) = ﬁ(v};v; —viv) = 1. (10)

1.1.3 Boundary Conditions and Bunch-Davies Vacuum

A vacuum state for the fluctuations
ir0) =0 (11)

can be chosen in a standard way, as the Minkowski vacuum of a comoving observer in the far
past (when all comoving scales were far inside the Hubble horizon), 7 — —oo or |k7| > 1 or
k> aH.

efik‘r
lim v, = i 12
oo 2k (12)
1.1.4 Solution in de Sitter Space
Consider the de Sitter limit € = —% — 0 and
Z” CL” 2
T2 = 13
z a T2 (13)
The mode equation
2
vy + (k2 - —2) v =0 (14)
T

has an exact solution

v _&e—ikT (1_i)+6eikr (1+i> (15)
F 2k kT 2k kr )

After considering the boundary conditions, the unique Bunch-Davies mode function is

vk:e\/;i;(l—é) | (16)




1.1.5 Power Spectrum in Quasi-de Sitter

Compute the power spectrum of the field zﬁk = a 'y,

() r)) = ot k) EOE — orpse iy ey

On superhorizon scales, |kT| < 1, this approaches a constant
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Compute the power spectrum of R = %@D at horizon crossing, a(t,)H (t,) = k, with dimen-

k

or

sionless power spectrum A% (k) by

<RkRk/> = (271’)35(1{ + k/)PR(k’) N A%(k’) = ;—3PR(]{') (20)

such that the real space variance of R is (RR) = [;° A% (k) dInk. This gives
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A% (k) = (21)

1.2 Tensor Perturbations
1.2.1 Action

By expansion of the Einstein-Hilbert action one may obtain the second-order action for tensor

fluctuations is
Msl
Sy =~ 2 / drda®a® ()2 — (Drhiy)?] (22)

We define the following Fourier expansion

d3k, s s ik-x
b= [ G 2 b, (23)

s=+4,X

!

where €; = k'e;; = 0 and €;(k)e; (k) = 20,5. The tensor action (22) becomes

Z / dek M2 [hi/ by — k*hih] . (24)
We define the canonically normalized field
Uk
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to get

(26)
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where
@ _ = (27)
holds in de Sitter space.

1.2.2 Quantization

Each polarization of the gravitational wave is just a renormalized massless field in de Sitter
space

2 Vk
hy = —y, L= —. 28
The power spectrum for a single polarization of tensor perturbations is
4 (H\?
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1.2.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is
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1.3 The Energy Scale of Inflation

The tensor-to-scalar ratio is

Ad (k)
= . 31
"= R oy
Since A? is fixed and A2 o H> ~ V, r is a direct measure of the energy scale of inflation
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2 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are
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where

dln H
e=——n - (35)
The tensor-to-scalar ratio is A2
TEA—g:Hi&“*. (36)
2.1 Scale-Dependence
The spectral indices are
dln A2 dlnA? dN d1n A?
,— 1= 2 = 5 = ¢ .
s dink _ dN dlmk’ T dink (37)
The derivative with respect to e-folds is
dinA?  d(ln H?/e + const) _lenH dlne (38)
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Hence ) .
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To first order in the Hubble slow-roll parameters
ne—1=[-2c—2(c—n)](1+¢) =2n, —4e,, ng=—2¢,. (42)

2.2 Slow-Roll Results

In the slow-roll approximation the Hubble and potential slow-roll parameters are related as

follows ) .
_f _ ¢
5:—m%€v, n:_H_g&b%nv_ﬁv. (43)
The scalar and tensor spectra are then expressed purely in terms of V(¢) and €, (or V)
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The scalar spectral index is
ns — 1 =2ns — 6€; | (45)
The tensor spectral index is
ng = —ZE: s (46)
and the tensor-to-scalar ratio is
r = 16¢; |. (47)




