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1 Quantum Fluctuations in de Sitter Space

1.1 Scalar Perturbations

Consider action for single-field slow-roll model of inflation

S =
1

2

∫
d4x
√
−g

[
R− (∇φ)2 − 2V (φ)

]
, (1)

with the following gauge for the dynamical fields gij and φ

δφ = 0 , gij = a2[(1− 2R)δij + hij] , ∂ihij = hii = 0 . (2)

(Aided by Scalar-Vector-Tensor decomposition. We ignore the vector perturbations Si and

Fi aren’t created by inflation and decay with the expansion of the universe.)

R remains constant outside the horizon, and we compute its correlation functions at

horizon crossing.

1.1.1 Free Field Action

Expand the action (1) up to O(R3)

S(2) =
1

2

∫
d4x a3

φ̇2

H2

[
Ṙ2 − a−2(∂iR)2

]
. (3)

S(2) =
1

2

∫
dτd3x

[
(v′)2 + (∂iv)2 +

z′′

z
v2
]
, (...)′ ≡ ∂τ (...) . (4)

with

v ≡ zR , where z2 ≡ a2
φ̇2

H2
= 2a2ε , (5)

and transitioning to conformal time τ

Fourier expand the field v

v(τ,x) =

∫
d3k

(2π)3
vk(τ)eik·x , (6)

where

v′′k +

(
k2 − z′′

z

)
vk = 0 . (7)
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1.1.2 Quantization

Promote the field v to quantum operator via

vk → v̂k = vk(τ)âk + v∗−k(τ)â†−k , (8)

where the creation and annihilation operators â†−k and âk satisfy

[âk, â
†
k′ ] = (2π)3δ(k− k′) , (9)

〈vk, vk〉 ≡
i

~
(v∗kv

′
k − v∗k ′vk) = 1 . (10)

1.1.3 Boundary Conditions and Bunch-Davies Vacuum

A vacuum state for the fluctuations

âk|0〉 = 0 (11)

can be chosen in a standard way, as the Minkowski vacuum of a comoving observer in the far

past (when all comoving scales were far inside the Hubble horizon), τ → −∞ or |kτ | � 1 or

k � aH.

lim
τ→−∞

vk =
e−ikτ√

2k
. (12)

1.1.4 Solution in de Sitter Space

Consider the de Sitter limit ε ≡ − Ḣ
H
→ 0 and

z′′

z
=
a′′

a
=

2

τ 2
. (13)

The mode equation

v′′k +

(
k2 − 2

τ 2

)
vk = 0 (14)

has an exact solution

vk = α
e−ikτ√

2k

(
1− i

kτ

)
+ β

eikτ√
2k

(
1 +

i

kτ

)
. (15)

After considering the boundary conditions, the unique Bunch-Davies mode function is

vk =
e−ikτ√

2k

(
1− i

kτ

)
. (16)
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1.1.5 Power Spectrum in Quasi-de Sitter

Compute the power spectrum of the field ψ̂k ≡ a−1v̂k,

〈ψ̂k(τ)ψ̂k′(τ)〉 = (2π)3δ(k + k′)
|vk(τ)|2

a2
= (2π)3δ(k + k′)

H2

2k3
(1 + k2τ 2) . (17)

On superhorizon scales, |kτ | � 1, this approaches a constant

〈ψ̂k(τ)ψ̂k′(τ)〉 → (2π)3δ(k + k′)
H2

2k3
= (2π)3δ(k + k′)

2π2

k3
∆2
ψ . (18)

or

∆2
ψ =

(
H

2π

)2

. (19)

Compute the power spectrum of R = H
φ̇
ψ at horizon crossing, a(t?)H(t?) = k, with dimen-

sionless power spectrum ∆2
R(k) by

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) , ∆2
R(k) ≡ k3

2π2
PR(k) , (20)

such that the real space variance of R is 〈RR〉 =
∫∞
0

∆2
R(k) d ln k. This gives

∆2
R(k) =

H2
?

(2π)2
H2
?

φ̇2
?

. (21)

1.2 Tensor Perturbations

1.2.1 Action

By expansion of the Einstein-Hilbert action one may obtain the second-order action for tensor

fluctuations is

S(2) =
M2

pl

8

∫
dτdx3a2

[
(h′ij)

2 − (∂lhij)
2
]
. (22)

We define the following Fourier expansion

hij =

∫
d3k

(2π)3

∑
s=+,×

εsij(k)hsk(τ)eik·x , (23)

where εii = kiεij = 0 and εsij(k)εs
′
ij(k) = 2δss′ . The tensor action (22) becomes

S(2) =
∑
s

∫
dτdk

a2

4
M2

pl

[
hsk
′hsk
′ − k2hskhsk

]
. (24)

We define the canonically normalized field

vsk ≡
a

2
Mplh

s
k , (25)
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to get

S(2) =
∑
s

1

2

∫
dτd3k

[
(vsk
′)2 −

(
k2 − a′′

a

)
(vsk)2

]
, (26)

where
a′′

a
=

2

τ 2
(27)

holds in de Sitter space.

1.2.2 Quantization

Each polarization of the gravitational wave is just a renormalized massless field in de Sitter

space

hsk =
2

Mpl

ψsk , ψsk ≡
vk
a
. (28)

The power spectrum for a single polarization of tensor perturbations is

∆2
h(k) =

4

M2
pl

(
H?

2π

)2

. (29)

1.2.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is

∆2
t = 2∆2

h(k) =
2

π2

H2
?

M2
pl

. (30)

1.3 The Energy Scale of Inflation

The tensor-to-scalar ratio is

r ≡ ∆2
t (k)

∆2
s (k)

. (31)

Since ∆2
s is fixed and ∆2

t ∝ H2 ≈ V , r is a direct measure of the energy scale of inflation

V 1/4 ∼
( r

0.01

)1/4
1016 GeV . (32)

2 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are

∆2
s (k) ≡ ∆2

R(k) =
1

8π2

H2

M2
pl

1

ε

∣∣∣∣∣
k=aH

, (33)

∆2
t (k) ≡ 2∆2

h(k) =
2

π2

H2

M2
pl

∣∣∣∣∣
k=aH

, (34)
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where

ε = −d lnH

dN
. (35)

The tensor-to-scalar ratio is

r ≡ ∆2
t

∆2
s

= 16 ε? . (36)

2.1 Scale-Dependence

The spectral indices are

ns − 1 ≡ d ln ∆2
s

d ln k
=
d ln ∆2

s

dN
× dN

d ln k
, nt ≡

d ln ∆2
t

d ln k
. (37)

The derivative with respect to e-folds is

d ln ∆2
s

dN
=
d (lnH2/ε+ const)

dN
= 2

d lnH

dN
− d ln ε

dN
. (38)

d ln ε

dN
= 2(ε− η) , where η = −d lnH,φ

dN
. (39)

ln k = N + lnH . (40)

Hence
dN

d ln k
=

[
d ln k

dN

]−1
=

[
1 +

d lnH

dN

]−1
= (1− ε)−1 ≈ 1 + ε . (41)

To first order in the Hubble slow-roll parameters

ns − 1 = [−2ε− 2(ε− η)] (1 + ε) = 2η? − 4ε?, nt = −2ε?. (42)

2.2 Slow-Roll Results

In the slow-roll approximation the Hubble and potential slow-roll parameters are related as

follows

ε ≡ − Ḣ

H2
≈ εv , η ≡ − φ̈

Hφ̇
≈ ηv − εv . (43)

The scalar and tensor spectra are then expressed purely in terms of V (φ) and εv (or V,φ)

∆2
s (k) ≈ 1

24π2

V

M4
pl

1

εv

∣∣∣∣∣
k=aH

, ∆2
t (k) ≈ 2

3π2

V

M4
pl

∣∣∣∣∣
k=aH

. (44)

The scalar spectral index is

ns − 1 = 2η?v − 6ε?v . (45)

The tensor spectral index is

nt = −2ε?v , (46)

and the tensor-to-scalar ratio is

r = 16ε?v . (47)
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