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1 A little history...

Starobinsky’s motivation was to find a cosmological model without a singularity
in the past. Advances in the area of QFT on curved spaces [1–5] caused him
to consider quantum corrections1 to the Einstein equations in order to find non
singular solutions.
In his famous model [7], Starobinsky did not a priori introduce a modification
of the R-term in the Einstein-Hilbert action but simply considered the Einstein
equations with then recently proposed quantum corrections to the right-hand-
side, i.e.

Rµν −
1

2
gµνR = 〈Tµν〉, (1.1)

with 8πG = c = 1 and

〈Tµν〉 =K1

(
RσµRνσ −

2

3
RRµν −

1

2
gµνRστR

στ +
1

4
gµνR

2

)
+K2

(
∇µ∇νR− 2gµν�R− 2RRµν +

1

2
gµνR

2

)
, (1.2)

where the constants K1,K2 depend on the number and spins of the quantum
fields taken into account. The Einstein equations can then be solved to yield
a universe where an early de Sitter phase extends infinitely to the past but
comes to an end at a later point, thus the initial singularity is avoided and the
understood evolution of the universe is not spoiled.
Only later, it was realised that Starobinsky’s modification of (1.1) could be
reproduced by modifying the Einstein-Hilbert action

S =
1

2

∫
d4x
√
−gR (1.3)

with [8]

R→ f(R) = R+ αR2 + βR2 ln
R

C
, (1.4)

where α� β and C is an arbitrary constant. So let’s review f(R) theory...

1He took into consideration the one-loop approximation of the interaction of quantum free
matter fields with the gravitational field, see [6] for a comprehensive review.
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2 f(R) Theory

The subsequent discussion follows the brilliant treatment of [9]. Consider the
modified Einstein-Hilbert action

S =
1

2

∫
d4x
√
−gf(R) +

∫
d4xLM (gµν ,ΨM ), (2.1)

where the second term is the matter Lagrangian and R = gµνRµν , Rµν = Rαµαν .
Varying the above action with respect to gµν yields

f ′(R)Rµν −
1

2
gµνf(R)−∇µ∇νf ′(R) + gµν�f

′(R) = T (M)
µν , (2.2)

where f ′(R) = ∂f/∂R, � = ∇µ∇µ and T
(M)
µν is the energy-momentum tensor

of matter. Setting f(R) = R − 2Λ reproduces the Einstein equations with a
cosmological constant term. Taking the trace of (2.2) and considering T (M) =

gµνT
(M)
µν , we find

3� f ′(R)︸ ︷︷ ︸
scalaron χ

+f ′(R)R− 2f(R) = T (M). (2.3)

The above determines the dynamics of the propagating scalar degree of freedom2

f ′(R). Considering a vacuum, i.e. T = 0 and imposing a constant R, thus
�f ′(R) = 0, we find a de Sitter point at which f ′R − 2f = 0. The model
f = αR2 satisfies this condition and therefore gives rise to exact de Sitter space.
A model of the type f = R + αR2 leads to a de Sitter phase for as long as the
R2-term dominates. When the linear term becomes significant, inflationary
expansion ends and a phase of reheating follows in which oscillation of R leads
to gravitational particle production.
Considering a spatially flat FLRW spacetime, i.e.

ds2 = gµνdx
µdxν = dt2 − a2(t)dx2, (2.4)

we have
R = 6

(
2H2 + Ḣ

)
, (2.5)

where the dot denotes differentiation with respect to coordinate time t and we
find the field equations

3f ′H2 =
1

2
(f ′R− f)− 3Hḟ ′ + ρM , (2.6)

−2f ′Ḣ = f̈ ′ −Hḟ ′ + (ρM + PM ) , (2.7)

ρ̇M = −3H (ρM + PM ) , (2.8)

with T
(M)
µν = diag(ρM ,−PM ,−PM ,−PM ).

2Inspecting (2.3) lets one recognise the term f ′(R)R = χR which indicates a non-minimal
coupling of the Ricci scalar to the field χ. When the equation of motion is non-linear in R but
shows a term where R is multiplied by some scalar function, one speaks of the equation being
formulated in the Jordan frame. Strictly speaking, f(R) is not a function of some scalar field
but we will nevertheless refer to this representation as being in the Jordan frame.
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3 Inflation in f(R) Theories

Consider models of the type

f(R) = R+ αRn, (3.1)

with α, n > 0 in the absence of matter, i.e. ρM = 0. Equation(2.6) then yields

3(1 + nαRn−1)H2 =
1

2
(n− 1)αRn − 3n(n− 1)αHRn−2Ṙ. (3.2)

Inflation may be realised when the second term of (3.1) dominates, i.e. f ′ =
1 + nαRn−1 � 1. We thus can approximate f ′ ≈ nαRn−1 and recast (3.2) as

H2 ≈ n− 1

6n

(
R− 6nH

Ṙ

R

)
. (3.3)

For inflation, we require the Hubble parameter to evolve slowly, i.e. |Ḣ/H2|,
|Ḧ/(HḢ)| � 1. Then the above reduces to

ε = − Ḣ

H2
≈ −2 + n

(n− 1)(2n− 1)
. (3.4)

For n = 2, the above equals zero and the exact de Sitter solution is recovered.
Assuming ε > 0, the above may be solved to yield3

H ≈ 1

εt
, (3.5)

a ∝ t1/ε. (3.6)

The standard inflationary scenario with decreasing H is realised within the
regime (1 +

√
3)/2 < n < 2.

In the following, we will consider a reformulation [10] of Starobinsky’s original
work with

f(R) = R+
R2

6M2
, (3.7)

where the constant M has dimensions of mass. Considering equations (2.6) and
(2.7), we now have

Ḧ − Ḣ2

2H
+

1

2
M2H = −3HḢ, (3.8)

R̈+ 3HṘ+M2R = 0. (3.9)

We immediately see that R has an equation of motion of damped harmonic
oscillator type where the damping is due to Hubble friction. This will eventually
cause the linear R-term to dominate over the quadratic one and thus inflation

3Strictly speaking, solving (3.5) gives a = a0C−n(1 + x/n)n, where n = ε−1, x = C · t
and C is an appearing constant of integration. Approaching the de Sitter limit gives n→∞
and the definition of the exponential function appears. However, the term C−n →∞ or → 0
depending on whether C < 1 or C > 1 respectively. Hence, choosing C = H0 with H0 being
the Hubble parameter at the onset of inflation and working in units of H0, i.e. C = H0 = 1,
one recovers a ∝ et which is exponential behaviour in the de Sitter limit as expected.
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to end.
During inflation, the first two terms on the left-hand side of (3.10) may be
omitted, hence we have Ḣ ≈ −M2/6. We then find

H ≈ H0 −
M2

6
(t− t0) (3.10)

a ≈ a0eH0(t−t0)−(M2/12)(t−t0)2 (3.11)

R ≈ 12H2 −M2, (3.12)

where the zero denotes the quantities value at the onset of inflation. Inflation
persists as long as

ε = − Ḣ

H2
≈ M2

6H2
< 1. (3.13)

Inflation ends when H2 = M2/6, thus M determines the energy scale of the end
of inflation. From (3.10) we find inflation to end at tf ≈ t0 + 6H0/M

2. Thus
the number of e-folds of the inflationary phase is4

N ≡
∫ tf

t0

Hdt ≈ H0(tf − t0)− M2

12
(tf − ti)2 =

3H2
0

M2
≈ 1

2ε(t0)
. (3.14)

So far it looks as if we have a very good candidate for an inflationary model.
However, recalling the last talk, we might ask what mechanism might now be
responsible for generating primordial perturbations as we don’t have a quantum
scalar field that undergoes fluctuations. So consider the following...

4 Conformal Transformations

We now seek an action that entails the physics of the above yet is only linear
in R. But isn’t that against the whole point of f(R)-theories? Consider the
conformal transformation

g̃µν = Ω2gµν , (4.1)

where Ω2 is the conformal factor and a tilde now denotes a quantity in the
Einstein frame. When introducing

ω ≡ ln Ω, ∂µω ≡
∂ω

∂x̃µ
, �̃ ≡ 1√

−g̃
(
√
−g̃g̃µν∂νω), (4.2)

one may find
R = Ω2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω), (4.3)

where
√
−g = Ω−4

√
−g̃. The action may be recast as

S =

∫
d4x
√
−g
(

1

2
f ′R− U

)
+

∫
d4xLm, (4.4)

with U = 1/2(f ′R− f). Combining all of the above, one may write

S =

∫
d4x
√
−g̃
(

1

2
f ′Ω−2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω)− Ω−4U

)
+

∫
d4xLM (Ω−2g̃µν ,ΨM ). (4.5)

4Again, note that for de Sitter we have ε = 0, hence the expression diverges implying an
ever lasting de Sitter phase.
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By inspection, one may then choose Ω2 = f ′(R) for f ′ > 0. We furthermore
introduce a canonical variable φ =

√
3/2 ln f ′(R) and thus have5 ω = φ/

√
6.

Gauss’ theorem will let a contribution of the type
∫
d4x
√
−g̃�̃ω vanish and we

can hence formulate the action in the Einstein frame as

SE =

∫
d4x
√
−g̃
(

1

2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

)
+

∫
d4xLM

(
f ′−1(φ)g̃µν ,ΨM

)
, (4.6)

where

V (φ) =
U

f ′2
=
f ′R− f

2f ′2
. (4.7)

We have thus found an effective scalar field with the Lagrangian Lφ = − 1
2 g̃
µν∂µφ∂νφ−

V (φ). Note that the integrand of the above action is identical to the action of
Higgs inflation after canonical normalisation in the Einstein frame at large φ,
i.e.

1

2
R̃− 1

2
g̃µν∂µφ̃∂ν φ̃− V (φ̃), (4.8)

where the tilde denotes the Higgs field in the Einstein frame and f(φ̃) = 1+ζφ̃2.
The Higgs potential6 V (φ̃) = f(φ̃)−2 1

4λH(φ(φ̃)2 − v2) in the Einstein frame is

proportional to φ̃2 for small φ and flat at large φ.
This behaviour is similar to that of the effective scalar field’s potential in R2

inflation that will be subject of the next section.

5 Dynamics in the Einstein Frame

In the Einstein frame, the metric is given by

ds̃2 = Ω2ds2 = f ′(dt2 − a2dx2) = dt̃2 − ã2dx2, (5.1)

from which we deduce

H̃ ≡ 1

ã

dã

dt̃
=

1
√
f
′

(
H +

ḟ ′

2f ′

)
. (5.2)

The effective scalar field is

φ =

√
3

2
ln f ′ =

√
3

2
ln

(
1 +

R

3M2

)
. (5.3)

Considering the above, one has

V (φ) =
3M2

4

(
1− e−

√
2/3φ

)2
, (5.4)

which, as pointed out earlier, behaves similarly to the Higgs potential in the
Einstein frame given as

V (φ̃) =
λH
4ζ2

(
1− e−

√
2/3φ

)2
. (5.5)

5Obviously, we now may also express f ′ in terms of φ, namely f ′(φ) = exp(
√

2/3φ).
6For a comprehensive discussion of Higgs inflation, see desy.de/~westphal/workshop_

seminar_fall_2010/Higgs_Inflation.pdf.
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The potential is flat for large field values thus leading to slow roll inflation and
quadratic for low values of the field causing the field to oscillate around its
minimum.
Now recalling R = 6(2H2 + Ḣ) ≈ 12H2, we may write

f ′ = 1 +
R

3M2
≈ 4

H2

M2
. (5.6)

Therefore, the time variable t̃ in the Einstein frame can be cast as

t̃ =

∫ t

t0

dt
√
f ′ ≈ 2

M

(
H0(t− t0)− M2

12
(t− t0)2

)
. (5.7)

Furthermore, we find

ã ≈
(

1− M2

12H2
0

Mt̃

)
ã0e

Mt̃/2, (5.8)

where ã0 = 2H0a0/M . At last, the Hubble parameter in the Einstein frame is
given as

H̃ ≈ M

2

[
1− M2

6H2
0

(
1− M2

12H2
0

Mt̃

)−2]
, (5.9)

which for which ˙̃H < 0. The field equations for the action (4.6) are

3H̃2 =
1

2

(
dφ

dt̃

)2

+ V (φ), (5.10)

d2φ

dt̃2
+ 3H̃

dφ

dt̃
+
dV

dφ
= 0, (5.11)

which are of standard form. As usual, we can define the slow-roll parameters

ε̃ ≡ −dH̃/dt̃
H̃2

≈ 1

2

(
dV/dφ

V

)2

= εv, (5.12)

η̃ ≡ d2φ/dt̃2

H̃(dφ/dt̃)
≈ ε̃− ∂2V/∂φ2

3H̃2
= ηv. (5.13)

The number of e-folds in the Einstein frame is

Ñ =

∫ t̃f

t̃0

H̃dt̃, (5.14)

which we relate to the number of e-folds in the Jordan frame via

H̃dt̃ =
1
√
f
′

(
H +

ḟ ′

2f ′

)√
f ′dt

= Hdt

(
1 +

Ḣ

H2

)
︸ ︷︷ ︸

→1

= dN,

6



thus the number of e-folds during slow-roll is equal in both frames. Evaluating
the slow-roll parameters with the potential of the effective scalar field in the
Einstein frame and combining the results with the expression for the number of
e-folds in terms of the potential

Ñ =

∫ φ0

φf

V

V.φ
dφ, (5.15)

as well as the approximation H̃ ≈M/2, we find

ε̃v ≈
3

4Ñ2
, η̃v ≈

1

Ñ
, (5.16)

which will be of use later on.

6 Density Perturbations

In the Jordan frame, we cannot rely on the quantum fluctuations of a scalar
field to provide a mechanism for the creation of primordial perturbations. The
Einstein equations may hence only be perturbed with

F → F̄ + δF, (6.1)

where the bar denotes the unperturbed background value. Unlike the case with
the scalar field, the physical origin of the perturbation remains unspecified.
Nevertheless, one obtains a familiar result, namely a scale invariant spectrum
of the curvature perturbation R

PR ≈
1

Qs

(
H

2π

)2

(6.2)

with Qs = φ̇2/H2. For f(R) = R + R2/(6M2), we furthermore obtain the
results

Nk ≈
1

2ε(t∗)
, (6.3)

PR ≈
N2
∗

3π

(
M

mpl

)2

, (6.4)

n ≈ 1− 2

N∗
, (6.5)

r ≈ 12

N2
∗
, (6.6)

where t∗ is the time of (event) horizon exit of the perturbations we now observe
in the CMB and N∗ is the number of e-folds before the end of inflation for the
horizon exit of those perturbations. WMAP five year data constraints PR ≈
(2.445 ± 0.096) · 10−9 and thus M ≈ 3 · 10−6mpl ≈ 1013GeV. For Nk = 55,
the spectral index is n = 1 − 2/55 = 0.964 and the scalar-to-tensor ration
r ≈ 0.004 which are in perfect agreement with the results published by the
Planck collaboration.
It may also be shown that the curvature perturbationR is conformally invariant,
hence the observables remain unchanged under the change from Jordan to the
Einstein frame.
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