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1 Introduction

We want to study N = 1 SUGRA theories in 4D. By demanding that the conditions for slow-
roll in�ation and for dS vacua are satis�ed in scenarios where SUSY is broken by F -terms it
is possible to derive constraints on the geometry of the scalar manifold in such theories [1].
As it turns out, the constraints become stronger as the ratio between the Hubble parameter
H and the gravitino mass m3/2 increases.

We will start with reviewing the slow-roll conditions for (multi-�eld) in�ation scenarios and
some properties of Kähler geometry. Since both has been covered in previous talks, we will be
brief and just collect the necessary results. In the next section, we derive the aforementioned
constraint on the holomorphic sectional curvature in the Goldstino direction and discuss its
implications and its relation to the metastable dS condition. In the last section, we present
some string-inspired SUGRA examples and discuss the consequences of the constraint and
how it can be met in speci�c examples.

1.1 Review of slow-roll conditions

Throughout we will be working in Planck units (MP = 1). In the single �eld in�ation case,
we start with the Lagrangian

L =
1

2
R− ∂µφ∂µφ− V (φ, φ) . (1)

In order to realize in�ation in such a setup, the slow-roll parameters ε, η de�ned by

ε :=
1

2

(
V ′

V

)2

, η :=
V ′′

V
(2)

have to be small, ε, |η| � 1. Here, the prime denotes di�erentiation with respect to the
(canonically normalized) �eld φ.

In the case of multi-�eld in�ation, (1) is changed to

L =
1

2
R− gi̄∂µφi∂µφ̄ − V (φ, φ) , (3)

where gi̄ is the (hermitian) Kähler metric, which is in general a function of the scalars.
Roughly, the �rst and second derivatives occurring in the single �eld slow-roll parameters (2)
turn into the calculation of the gradient and the Hessian, respectively:

ε :=
∇iV∇iV

V 2
(4a)

η := min eigenvalue(N) , N :=
1

V

(
∇i∇jV ∇i∇̄V
∇ı̄∇jV ∇ı̄∇̄V

)
. (4b)
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The direction of in�ation is ∇iV/
√
∇jV∇jV . Note that we use the �eld covariant deriva-

tives ∇. Let us brie�y argue how this comes about. Recall that in general relativity covariant
derivatives occur because the metric is a non-constant function of the space-time coordinates.
Hence upon partial integration, one obtains derivatives acting on gµν , which is �repaired� by
introducing a connection, which itself depends on derivatives of the metric. The same happens
for the Kähler metric. In general gi̄ is a function of the scalar �elds, gi̄ = gi̄(φ, φ). Hence in
deriving the equations of motion for the in�aton from the variation of (3), we have to account
for the �eld dependence of the Kähler metric. This is done by introducing the Levi-Civita
connection which contains the Christo�el symbols Γabc in �eld space. As in GR, the connection
is compatible with the Kähler metric, i.e. ∇g = 0.

The mass matrix

M :=

(
∇i∇̄V ∇i∇jV
∇ı̄∇̄V ∇ı̄∇jV

)
(5)

is connected to the matrix N via

N I
J =

LIJ̄MJ̄J

V
, LIJ̄ :=

(
gi̄ 0
0 gı̄j

)
. (6)

1.2 Review of supergravity and Kähler geometry

The metric gi̄ of Kähler manifolds is given in terms of derivatives of a Kähler potential K
via gi̄ = ∂i∂̄K. Due to this, geometric objects derived from the Kähler metric like the
Christo�el symbols Γabc or the curvature Rabcd simplify. In particular, the only non-vanishing
Christo�el symbols have only holomorphic or only anti-holomorphic indices. Consequently,
the Riemann tensor is only non-vanishing if the index structure is (up to the usual symmetries
in the indices) Ri̄pq̄. This leads to a simpli�cation of the expressions in (4a) containing the
covariant derivatives.

In supergravity, the scalar potential V can be conveniently written in terms of the expres-
sion G = K + ln |W |2 as

V = eG(GiGi − 3) , (7)

where we have introduced the quantity Gi = ∂G/∂φi. The Kähler metric gi̄ is then given by
gi̄ = Gi̄ = ∇i∇̄G, where the �rst equality follows since the W and W dependence of G
is annihilated by ∂̄ and ∂i, respectively. The second equality follows since G is a scalar and
since there are no Christo�el symbols with mixed indices.

The algebraic equation of motion for the F -terms becomes F i = m3/2G
i with the gravitino

mass m3/2 = eG/2. When 〈F i〉 6= 0, SUSY is broken spontaneously. The direction Gi de�nes
the Goldstino which is eaten by the gravitino upon SUSY breaking. The unit vector in this
direction is given by

fi =
Gi√
GiGi

. (8)

This completes our review.

2



2 Constraints from slow-roll in�ation

First we want to calculate the covariant derivatives occurring in (4a). For the �rst (covariant)
derivative of V we �nd

∇iV = ∇i e
G(gj̄GjG̄ − 3)

= V ∇iG+ eG
[
gj̄(Gj∇iG̄ +G̄∇iGj)

]
= GiV + eG(Gjg

j̄gi̄ +Gj∇iGj) = eG(Gi +Gj∇iGj) +GiV .

(9)

where we used in the second step that the metric can be pulled through the covariant derivative.
The second derivatives can be evaluated in a similar manner. The calculation is straightforward
but a bit tedious and yields

∇i∇̄V = eG(gi̄ +∇iGk∇̄G
k −Ri̄pq̄G

pGq̄) + (Gi∇̄V −GiG̄V ) + (gi̄V +G̄∇iV ) , (10)

∇i∇jV = eG(∇iGj +∇jGi +Gk∇i∇jGk) + (Gi∇jV −GiGjV ) + (V∇iGj +Gj∇iV ) . (11)

Let us brie�y explain the structure. The terms in the three brackets arise from di�erentiating
in expression (9) the inner part of the bracket, the factor eG in front, and the GiV , respectively.
In (10) the curvature term arises from the commutator [∇i,∇̄] of the covariant derivatives
and the metric expressions arise from the ∇iG̄ terms. In (11), the commutator term is absent
since the corresponding Riemann tensor vanishes (it has three holomorphic indices), and the
metric expressions are replaced with expressions of the form ∇iGj.

Notice that the expressions Gi, ∇iGj, and ∇i∇jGk are independent quantities that depend
on (derivatives of) the superpotential. Thus by changing W , the slow-roll parameter ε can
be made arbitrarily small by tuning Gj∇iGj against Gi in (9). To tune the absolute value of
the slow-roll parameter η, we have to investigate our freedom for adjusting N . We �nd that
by tuning ∇i∇jGk the value of ∇i∇jV can be set to any arbitrary value. Likewise, by tuning
∇iGj, most of the eigenvalues of ∇i∇̄V can be adjusted. The only exception is that along
the Goldstino direction fi, we have used (part of) this freedom to make ε small. Hence we
expect a constraint arising from the projection of (10) in the Goldstino direction fi. Indeed,
this gives the aforementioned constraint on the sectional curvature, as we shall see now.

To proceed further, we de�ne the Goldstino vector in terms of the direction (8) as

fI (α) :=
1√
2

(
e−iαfi, e

iαfı̄
)
, fJ(α) :=

1√
2

(
eiαf j, e−iαf ̄

)
, (12)

where α ∈ R is a phase. Using that for any unit vector η ≤ uIN
I
Ju

J and choosing two
orthogonal Goldstino directions, say α = 0, π/2, one obtains

η ≤ ∇i∇̄V

V
f if ̄ , (13)

which can be expressed after some algebra as

∇i∇̄V

V
f if ̄ = −2

3
+

4√
3

1√
1 + γ

Re

[
∇iV

V
f i
]

+
γ

γ + 1

∇iV∇iV

V 2
+
γ + 1

γ
σ̂(f i) , (14)

where we introduced

γ :=
1

3

V

m2
3/2

' H2

m2
3/2

= H2e−G , σ̂(f i) :=
2

3
−R(f i) :=

2

3
−Ri̄pq̄f

if ̄fpf q̄ , (15)
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to parameterize the ratio of the Hubble scale to the gravitino mass and the sectional curvature
R(f), respectively. From the de�nition (4a) of ε it is clear that for the unit vector f i we have
|f i∇iV/V | ≤

√
ε. Using this, we can rewrite (14) as

η ≤ ηmax := −2

3
+

4√
3

1√
1 + γ

√
ε+

γ

γ + 1
ε+

γ + 1

γ
σ̂(f i) . (16)

Thus, to meet the slow-roll condition |η| � 1, we need ηmax to be either negative and small
or positive. Inserting ε� 1 the bound becomes

σ̂(f i) & 2
3

γ
γ+1

or R(f i) . 2
3

1
γ+1

. (17)

It is worthwhile to compare this with the result we obtain for the mass matrix (5). Going
through the same steps in the computation, one obtains [2]

m2 = 3m2
3/2

(
2

3
− (γ + 1)R(f i)

)
. (18)

Thus for m2 > 0 we need R(f i) < 2/[3(γ + 1)]. It is useful to consider the limiting cases:

• In the limit γ � 1, i.e. m3/2 � H, the constraint (17) becomes R(f i) . 2/3, which
coincides with the mass bound (18).

• In the limit γ � 1, i.e. m3/2 � H, the constraints becomes much stronger, R(f i) . 0.

Let us apply our results to some example models to see why slow-roll in�ation works or cannot
work in these setups.

3 Examples

In this section we discuss some examples and apply the bound we just derived. Most of the
examples are string-inspired, with the in�aton given by the moduli sector.

3.1 Canonical Kähler potential

In the case of a canonical Kähler potential,

K =
∑
i

X iX i , (19)

the Kähler metric is the unit matrix and the resulting curvature is �at. Hence (17) is satis�ed
for any value of γ.

3.2 Kähler potential from simple string compacti�cations

In the case of simple string compacti�cations, one �nds for the moduli Kähler potentials of
the form

K = −n ln(T + T ) . (20)
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The scalar manifold is one-dimensional and its sectional curvature is constant and given by
R = 2/n. Hence for n < 3 we �nd that γ has to be negative and for n = 3 we are at the
boundary where γ = 0. By including subleading e�ects, 0 < γ � 1 is possible, but γ � 1 is
out of range since typically n = O(1) in these models.

The situation can be improved by adding an uplifting sector to the Kähler potential,

K = −n ln(T + T ) +XX . (21)

In this case the curvature of the submanifold in X direction vanishes. Hence by aligning the
Goldstino along this direction, the situation reduces to the one discussed in section 3.1 and
the bound (17) can be satis�ed.

Lastly, we want to discuss a Kähler potential that occurs for example when compactifying
string theory on orbifolds. It is of the form

K = −n ln(T + T −XX) . (22)

We �nd again a constant curvature R = 2/n and thus the additional term XX does not
improve the situation in this case.

3.3 SUGRA from Heterotic string compacti�cations

The moduli sector of string theory on a Calabi-Yau threefold in the large volume limit exhibits
the no-scale property [3] KiKi = 3, which means that the curvature along the direction
ki = Ki/

√
3 takes the critical value R(ki) = 2/3. Thus the question arises whether there is

another direction f i 6= ki along which the sectional curvature reduces.
For the special cases where the CY is an orbifold or a K3 �bration over a large P1, it can

actually be shown that the direction f i = ki is a minimum [4] and thus the situation is as the
one discussed in section 3.2.

Let us consider more general CY compacti�cations of the heterotic string. Neglecting the
complex structure and the bundle moduli, the Kähler potential is given by

K = − lnV , (23)

V =
23

3!

∫
X

J ∧ J ∧ J =
23

3!

∫
X

tiDi ∧ tjDj ∧ tkDk =
1

6
dijk(T

i + T i)(T j + T j)(T k + T k) ,

where the Kähler parameters ti are the real part of the lowest (scalar) component of the chiral
moduli super�elds T i. Whether or not the direction ki is a minimum of the curvature or a
saddle point can be studied by looking at the discriminant of the cubic polynomial V in the
ti, which gives a condition on the intersection numbers dijk.

3.4 SUGRA from Type II string compacti�cations

As a �nal example we want to present a recent analysis that has been carried out in [5]. In
classical type IIB string theory the Kähler potential is found to be [6]

K = −2 ln(V )− ln(S + S) . (24)
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The volume V is again given in terms of the triple intersection numbers dijk and the Kähler
parameters ti. Instead of being the real part of the lowest component of a chiral multiplet,
the ti's are connected to the T i = ρi + ibi via

ρi =
1

16
dijktjtk . (25)

For simplicity we assume that h1,1 = h1,1
+ = 1. In this case

V =

√
2

3
√
d111

(T + T )
3
2 . (26)

Furthermore, it is assumed that the complex structure moduli have been stabilized by �uxes.
Next the non-perturbative contributions superpotential and the quantum corrections to the
Kähler potential are included. The former correct the Gukov-Vafa-Witten superpotential
W =

∫
Ω ∧ F by non-perturbative terms coming from gaugino condensation on D7-branes

wrapping the four-cycle T ,

W = W0 +
n∑
i=1

Aie
−aiT . (27)

The Kähler corrections arise from α′2 [7] and α′3 [6] terms which can be derived from M-theory
and connected to Type IIB via the Sen limit of the dual F-Theory. In the end, the corrected
Kähler potential reads

K = −2 ln

[√
T + T

(
(T + T − 15

8
k2)

)
+
ξ̂

2

]
,

ξ̂ = −ζ(3)

2
χ(X)(S − S)

3
2 , k =

1√
3

[∫
B3

c1(B3) ∧ c1(B3) ∧ c1(B3)

] 1
3

,

(28)

where χ(X) is the Euler number of the CY threefold and c1(B3) is the �rst Chern class of the
CY fourfold base. Using this Kähler potential the (scalar) sectional curvature becomes in the

limit ξ̂ � V , k � t

R =
2

3
+

5

32

(
5
k4

t2
− 7

3
√

2

ξ̂

γ t
3
2

)
!
<

2

3
. (29)

For the expression in the brackets to become negative we need the α′3 to come with the
correct sign and to counter-balance the contribution from the α′2 corrections which are always
positive, hence forcing t to be very large and/or γ being very small.
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