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What is photon science?

> Development and application of

= new light sources (Hanus; Calendron; Ahr)

= new techniques for controlling matter (Li; Hoppner)

= new techniques for probing matter (Baev)
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Basic x-ray techniques



Dominant x-ray—atom interaction process: photoabsorption

Liberated K-shell electron

X-ray photon
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Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

Element K 1s Ly 2s La2p1z  L32p3p Mp3s  Mp3pyz Mzdpzz My3dzp Ms53ds;2  Nyds  Napdpyz  N3dpsp
1 H 13.6

2 He 24.6%

3 Li 54.7*

4 Be 111.5%

5B 188*

6 C 284.2*

7N 409.9* 37.3*

8 0 543.1% 41.6*

9F 696.7*

10 Ne 870.2* 48.5% 21.7* 21.6*

11 Na 1070.8t 63.5T 30.65 30.81

12 Mg 1303.01 88.7 49.78 49.50

13 Al 1559.6 117.8 72.95 72.55

14 Si 1839 149.7*b 99.82 99.42

15 P 2145.5 189* 136* 135*

16 S 2472 230.9 163.6* 162.5%

17 Cl 2822.4 270% 202* 200*

18 Ar 3205.9%  326.3* 250.61 248.4% 29.3* 15.9% 15.7%
19 K 3608.4%*  378.6* 297.3* 294.6* 34.8* 18.3* 18.3*
20 Ca 4038.5% 43847t 349.7t 346.21 443 1 25.4% 2547
21 Sc 4492 498.0* 403.6* 398.7* 51.1% 28.3% 28.3*
22 Ti 1966 560.91 460.2+ 453 8t 58.7T 32.61 32.61
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X-ray photoelectron spectroscopy (XPS)

A tool to measure inner-shell binding energies
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Figure 8.1 Processes occurring in (a) ultraviolet photoelectron
spectroscopy (UPS), (b) X-ray photoelectron spectroscopy (XPS),
(c) Auger electron spectroscopy (AES)
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Figure 8.14 The monochromatized AlKa carbon ls XPS spectrum of ethyltri-
fluoroacetate showing the chemical shifts relative to an ionization energy of

291.2 eV. (Reproduced, with permission, from Gelius, U., Basilier, E., Svensson,
S., Bergmark, T., and Siegbahn, K., J Electron Spectrosc., 2, 405, 1974)



X-ray absorption spectroscopy

Exploiting the impact of the chemical environment on
the x-ray-excited electron

> XANES (x-ray absorption near-edge structure)
or NEXAFS (near-edge x-ray absorption fine
structure)

> EXAFS (extended x-ray absorption fine
structure)



e XANES is region of x-ray absorption spectrum within ~50eV of the absorption edge.

What Is XANES ?
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» Suggested that division is that at which wavelength of excited electron is equal to
distance between absorbing atom and its nearest neighbor. (A (A) = 12/[e(eV)] .
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- Why Are We Interested In XANES? -

Oxidation State

Mn203 M

Mn K-edge Energy, eV

* Many edges of many elements show significant edge
shifts (binding energy shifts) with oxidation state.

EXAFS Data Collection and Analysis Course, NSLS, July 14-17, 2003 Page 8



X-ray scattering



X-ray crystallography: principle
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X-ray crystallography: application to biomolecules




Protein crystal




X-ray diffraction pattern




Molecular structure of a protein




Decay of inner-shell-excited systems



Figure 8.21 The competitive processes of X-ray fluorescence and
Auger electron emission
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An application In art history




Hidden painting by Van Gogh made visible
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Female portrait underneath Grasgrond by Vincent van Gogh




Accelerator-based x-ray sources



Synchrotrons

> A synchrotron is a circular accelerator of fixed radius R

> Bending magnets of field strength B keep the charged
particles (charge q) on circular path

> As energy E of particles increases (using high-frequency
acceleration techniques), B must be increased in a
synchronous manner —

E
B=—
qRR



Synchrotron radiation

> Charged, accelerated particles emit electromagnetic radiation
= Synchrotron radiation losses severe in electron synchrotrons

> This limits the maximum electron energy attainable
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Synchrotron radiation sources: storage rings and free-

electron lasers

Synchrotron radiation sources are not synchrotrons (in a strict sense)

B 1st generation: storage rings built for particle physics; used in parasitic
mode

B 2n generation: storage rings dedicated to the generation of
synchrotron radiation; radiation emitted in bend magnets is used

B 37 generation: insertion devices (wigglers and undulators) provide
more intense synchrotron radiation

B 4" generation: free-electron lasers
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A brief history of x-ray intensity
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X-ray photon science in Hamburg




PETRA lll is a synchrotron radiation source based on
(third-generation source)

INSERTION DEVICE
(Wiggler or Undulator)
Permanent Magnetic Material
Nd-Fe-B

Principle:

accelerated charged
particles (light ones, in
particular) emit
electromagnetic
radiation

“~__ Synchrotron
Radiation
X-ray beam
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Ablenkmagnet Bending Magnet

Wiggler Wiggler

Undulator Undulator

Freie-Elektronen-Laser Free Electron Laser
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Lasing via self-amplified spontaneous emission (SASE)

Electron beam

Claudio Pellegrini et al.
CEEL
SCIENCE



Microbunching and exponential gain

Radiation
power on a
logarithmic
scale
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Single-shot structure determination of biomolecules

Particle injection
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Making molecular movies: a new tool for femtochemistry

Molecular beam

1. Laser flash

triggers reaction 2. Laser flash takes

instantaneous "snapshots"
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Generating and probing
extreme states of matter
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The Linac Coherent Light Source (LCLS) at SLAC
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A look down the LCLS undulator hall




The first user experiment at the LCLS

L. Young et al., Nature 466, 56 (2010)



Neon charge states as a function of the photon energy
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Photon energy-dependent ionization pathways

Ne8+
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Counterintuitive impact of pulse duration

photon energy 2 keV, pulse energy 2 mJ

@ 230 fs to 80 fs model
- @ 230 fs to 20 fs model
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Beating the Auger clock: observe the formation of double-

core-hole states via Auger electron spectroscopy
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Observation of double-core-hole formation

photon energy 1050 eV, pulse energy 2 mJ, nominal pulse duration 80 fs, electrons
emitted perpendicular to x-ray polarization axis
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Conclusions

> Multiphoton absorption is central for experiments
using intense x-ray FEL radiation.

> Multiphoton absorption in the x-ray regime is
predominantly sequential.

> Sequential multiphoton absorption can display
nonlinearities.

> Multiphoton absorption in the x-ray regime is quite
insensitive to the spiky pulse structure of SASE
radiation.

> There is first evidence for a nonsequential process in
the x-ray regime.
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